КАРБОНИЛЬНЫЕ СОЕДИНЕНИЯ. СТРОЕНИЕ И  ХИМИЧЕСКИЕ СВОЙСТВА КАРБОНОВЫХ КИСЛОТ. ЛИПИДЫ.

 

 

1.     Карбоновые кислоты. Строение карбоксильной группы. Номенклатура.

 

Неспелые фрукты, щавель, барбарис, клюква, лимон… Что общего между ними? Даже дошкольник, не задумываясь, ответит: они кислые. А вот обусловлен кислый вкус плодов и листьев многих растений различными карбоновыми кислотами, в состав которых входит одна или несколько карбоксильных групп - СООН.

Название кислот "карбоновые" происходит от латинского названия угольной кислоты acidum carbonicum, которая была первой изученной в истории химии углеродсодержащей кислотой. Их часто называют жирными кислотами, так как высшие гомологи впервые были получены из природных жиров.

Карбоновые кислоты можно рассматривать как производные углеводородов, содержащие в молекуле одну или несколько функциональных карбоксильных групп:

Термин "карбоксильная" является составным, образовавшимся в соответствии с названиями двух групп: и гидроксил Н, входящих в состав карбоксильной группы.

 

Классификация карбоновых кислот.

Карбоновые кислоты в зависимости от природы радикала делятся на

предельные,

непредельные,

ациклические,

циклические.

По числу карбоксильных групп различают

одноосновные (с одной группой ООН)

многоосновные (содержат две и более групп ООН).

 

Алкановые кислоты - производные предельных углеводородов, содержащие одну функциональную карбоксильную группу. Их общая формула R - COOH, где R - радикал алкана. Гомологический ряд простейших низкомолекулярных кислот:

 

Изомерия, номенклатура.

Изомерия предельных кислот, так же как и предельных углеводородов, определяется изомерией радикала. Простейшие три кислоты с одним, двумя и тремя атомами углерода в молекуле изомеров не имеют. Изомерия кислот начинается с четвертого члена гомологического ряда. Так, масляная кислота C3H7 - COOH имеет два изомера, валериановая кислота C4H9 - COOH - четыре изомера.

Наиболее распространенными являются тривиальные названия кислот. Многие из них связаны с наименованием продуктов, из которых они первоначально были выделены или в которых были обнаружены. Например, муравьиную кислоту получили из муравьев, уксусную - из уксуса, масляную - из прогоршего масла.

По номенклатуре ИЮПАК к названию предельного углеводорода, соответствующего главной углеродной цепи, включая углерод карбоксила добавляется окончание -овая кислота. Так, например, муравьиная кислота - метановая кислота, уксусная - этановая, пропионовая - пропановая и т. д. Нумерацию атомов углерода главной цепи начинают от карбоксильной группы.

Остаток молекулы карбоной кислоты, образованный отнятием гидроксильной группы от карбоксила, имеющей строение, называется кислотным остатком или ацилом ( от лат. acidum - кислота). Ацил муравьиной кислоты (лат. acidum formicum) называется формил , уксусной (acidum aceticum) - ацетил .

 

Физические и химические свойства.

Физические свойства.

Первые три кислоты гомологического ряда (муравьиная, уксусная, пропионовая) - жидкости, хорошо растворимые в воде. Следующие представители - маслянистые жидкости, слабо растворимые в воде. Кислоты, начиная с каприновой С9Н19СООН, - твердые вещества, нерастворимые в воде, но растворимые в спирте, эфире.

Все жидкие кислоты отличаются своеобразным запахами.

Высокомолекулярные твердые кислоты запаха не имеют. С увеличением молекулярной массы кислот повышается их температура кипения и уменьшается плотность.

 

Химические свойства.

 Диссоциация кислот:

Описание: Описание: mb4_005

Степень диссоциации карбоновых кислот различна. Самой сильной кислотой является муравьиная, в которой карбоксил не связан с радикалом. Степень диссоциации органических кислот по сравнению с неорганическими значительно меньшая. Поэтому они являются слабыми кислотами. Органические кислоты, так же как и неорганические, дают характерные реакции на индикаторы.

Образование солей.

Описание: Описание: mb4_003

При взаимодействии с активными металлами (а), оксидами металлов (б), основаниями (в) водород карбоксильной группы кислоты замещается на металл и образуются соли.

Образование галогенагидридов кислот.

При замещении гидроксила карбоксильной группы кислот галогеном образуются производные кислот - галогенагидриды:

 

Образование ангидридов кислот.

Описание: Описание: mb4_014

Описание: Описание: mb4_006

При отнятии воды от двух молекул кислоты в присутствии катализатора образуются ангидриды кислот:

 

Образование сложных эфиров.

Так называемая реакция этерификации:

Описание: Описание: mb4_011

 

Описание: Описание: mb4_013

Образование амидов:

Галогены способны замещать водород радикала кислоты, образуя галогенокислоты. Это замещение происходит постепенно:

Описание: Описание: mb4_010

Описание: Описание: mb4_013

 

Описание: Описание: mb4_015

Галогенозамещенные кислоты - более сильные кислоты, чем исходные. Например, трихлоруксусная кислота примерно в 10 тыс. раз сильнее уксусной. Они используются для получения оксикислот, аминокислот и других соединений.

 

3.Дикарбоновые кислоты.

 

Дикарбоновые кислоты

Карбоновые кислоты, содержащие в своем составе одну карбоксильную группу, называют одноосновными, две - двухосновными и т. д. В настоящем разделе будут рассмотрены некоторые представители дикарбоновых кислот алифатического и ароматического рядов. Все они представляют собой кристаллические вещества.

Названия некоторых дикарбоновых кислот и их производных

 

Название кислоты

Формула

Название аниона или основы сложного эфира

Щавелевая (этандиовая) Малоновая (пропандиовая) Янтарная (бутандиовая) Глутаровая (пентандиовая)

НООС-СООН НООССН2СООН НООС(СН2)2СООН НООС(СН2)3СООН

Оксалат Малонат Сукцинат Глутарат

 

Систематические названия дикарбоновых кислот строятся по общим правилам заместительной номенклатуры. Однако для большинства из них предпочтительны тривиальные названия. Их латинские названия служат основой названия анионов и производных кислот, которые часто не совпадают с русскими тривиальными названиями.

Щавелевая кислота - простейшая двухосновная кислота. Некоторые ее соли, например оксалат кальция, трудно растворимы и часто образуют камни в почках и мочевом пузыре (оксалатные камни).

Янтарная кислота в заметном количестве была обнаружена в янтаре, откуда получила название сама кислота и ее производные сукцинаты (от лат. succinium - янтарь).

Малеиновая и фумаровая кислоты - представители ненасыщенных дикарбоновых кислот с одной двойной связью. Фумаровая кислота участвует в обменных процессах, протекающих в организме.

Описание: Описание: mb4_016

Реакционная способность и специфические реакции дикарбоновых кислот

Дикарбоновые кислоты образуют два ряда функциональных производных - по одной и по двум карбоксильным группам.

Кислотные свойства. С накоплением кислотных групп увеличиваются кислотные свойства соединений. Кислотность дикарбоновых кислот больше, чем монокарбоновых. Так, щавелевая кислота (pKa 1,23) значительно сильнее уксусной (pKa 4,76), что связано с -I- эффектом группы СООН, и благодаря этому более полной делокализации отрицательного заряда в сопряженном основании.

Описание: Описание: mb4_007

Влияние заместителя наиболее отчетливо проявляется при его близком расположении к кислотному центру.

Декарбоксилирование. При нагревании с серной кислотой щавелевая кислота декарбоксилируется, а образовавшаяся муравьиная кислота разлагается далее.

Описание: Описание: mb4_005

Малоновая кислота легко декарбоксилируется при нагревании выше 100 °С.

Описание: Описание: mb4_017

Образование циклических ангидридов. В дикарбоновых кислотах, содержащих четыре или пять атомов углерода в цепи и способных вследствие этого находиться в клешневидной конформации, происходит сближение в пространстве функциональных групп. В результате внутримолекулярной атаки одной карбоксильной группой (нуклеофилом) электрофильного центра другой карбоксильной группы происходит образование (при нагревании) устойчивого пятиили соответственно шестичленного циклического ангидрида, как показано на примерах янтарной и глутаровой кислот. Другими словами, ангидриды дикарбоновых кислот являются продуктами внутримоле- кулярной циклизации.

 

Описание: Описание: mb4_009

Малеиновая и фумаровая кислоты проявляют сходные химические свойства: вступают в реакции, свойственные соединениям с двойной связью (обесцвечивание бромной воды, водного раствора перманганата калия) и соединениям с карбоксильными группами (образуют два ряда производных - кислые и средние соли, эфиры и т. п.). Однако только одна из кислот, а именно малеиновая, в относительно мягких условиях претерпевает внутримолекулярную циклизацию с образованием циклического ангидрида. В фумаровой кислоте вследствие удаленности карбоксильных групп друг от друга в пространстве образование циклического ангидрида невозможно.

Описание: Описание: mb4_015

Окисление янтарной кислоты in vivo. Дегидрирование (окисление) янтарной кислоты в фумаровую, катализируемое в организме ферментом, осуществляется с участием кофермента ФАД. Реакция протекает стереоспецифично с образованием фумаровой кислоты (в ионной форме - фумарат).

Описание: Описание: mb4_008

Таутомерия β-дикарбонильных соединений

Определенная протонная подвижность атома водорода у α-атома углерода в карбонильных соединениях (слабого СН-кислотного центра) проявляется в их способности к реакциям конденсации. Если подвижность такого атома водорода возрастет настолько, что он сможет отщепиться в виде протона, то это приведет к образованию мезомерного иона (I), отрицательный заряд которого рассредоточен между атомами углерода и кислорода. Обратное присоединение протона к этому иону в соответствии с его граничными структурами может приводить либо к исходному карбонильному соединению, либо к енолу.

Описание: Описание: mb4_006

В соответствии с этим карбонильное соединение может существовать в равновесии с изомером - энольной формой. Такой вид изомерии называют таутомерией, а изомеры, находящиеся в состоянии подвижного равновесия, - таутомерами.

Таутомерия - равновесная динамическая изомерия. Ее сущность заключается во взаимном превращении изомеров с переносом какой-либо подвижной группы и соответствующим перераспределением электронной плотности.

 

Функциональные производные угольной кислоты

Угольная кислота занимает особое место среди соединений углерода, ее можно рассматривать как двухосновную кислоту.

Угольная кислота как индивидуальное соединение существует только в водном растворе. Попытка выделить кислоту из раствора приводит к ее разложению на диоксид углерода и воду.

Описание: Описание: mb4_011

Угольная кислота и ее производные выполняют важные функции в организме, некоторые из них применяются в качестве лекарственных средств.

Описание: Описание: mb4_010

Диоксид углерода (углекислый газ) - участник многих реакций карбоксилирования и декарбоксилирования in vivo и in vitro.

Карбоксилирование возможно тогда, когда в реакцию с диоксидом углерода вступают соединения с частичным отрицательным зарядом на атоме углерода. В организме взаимодействие диоксида углерода с ацетилкоферментом А приводит к образованию малонилкофермента А.

Описание: Описание: mb4

Подобно самой угольной кислоте, в свободном виде неизвестны и некоторые ее производные: монохлорангидрид СlСООН и моноамид - карбаминовая кислота H2NCOOH. Однако их сложные эфиры - вполне стабильные соединения.

Для синтеза производных угольной кислоты можно использовать фосген (дихлорангидрид) СОСl2, легко образующийся при взаимодействии монооксида углерода с хлором на свету. Фосген - чрезвычайно ядовитый газ (т. кип. 8 °С), в Первую мировую войну его применяли в качестве боевого отравляющего вещества.

Этиловый эфир хлоромуравьиной кислоты при реакции с аммиаком образует этиловый эфир карбаминовой кислоты H2NCOOC2H5. Эфиры карбаминовой кислоты (карбаматы) имеют общее название - уретаны.

Описание: Описание: mb4_002

Уретаны нашли применение в медицине как лекарственные средства, в частности мепротан и этацизин.

Описание: Описание: mb4_004

Мочевина (карбамид) (NH2)2C=0 - важнейший азотсодержащий конечный продукт обмена веществ у человека (с мочой выделяется мочевины около 20-30 г/сут).

Кислоты и щелочи при нагревании вызывают гидролиз мочевины; в организме она гидролизуется под действием ферментов.

Описание: Описание: mb4_013

При медленном нагревании до температуры 150-160 ?С мочевина разлагается с выделением аммиака и образованием биурета.

Описание: Описание: mb4_012

При взаимодействии биурета в щелочных растворах с ионами меди(II) наблюдается характерное фиолетовое окрашивание, обусловленное образованием хелатного комплекса (биуретовая реакция). Остаток биурета в хелатном комплексе имеет имидную структуру.

Описание: Описание: mb4_014

Производными карбоновых кислот, содержащими остаток мочевины в качестве заместителя, являются уреиды. Они применяются в медицине, в частности уреид α-бромоизовалериановой кислоты - бромизовал (бромурал) - используется как мягкое снотворное средство. Его эффект обусловлен сочетанием известных своим угнетающим действием на ЦНС брома и остатка изовалериановой кислоты.

Описание: Описание: mb4_012

Гуанидин (иминомочевина) - азотистое производное мочевины - является сильным основанием, поскольку сопряженная кислота - ион гуанидиния - мезомерно стабилизирован.

Описание: Описание: mb4_006

Остаток гуанидина входит в состав α-аминокислоты - аргинина и нуклеинового основания - гуанина.

 

Липиды. Классификация.

Липиды - являются сложными эфирами, образованными высшими одноосновными карбоновыми кислотами, главным образом пальмитиновой, стеариновой (насыщенные кислоты) и олеиновой (ненасыщенная кислота) и трехатомным спиртом - глицерином. Общее название таких соединений - триглицериды

Природные жиры представляют собой не индивидуальное вещество, а смесь различных триглицеридов.

Классификация липидов.

Липиды делят на:

         Простые:

                   а) ацилглицериды

                   б) воски

         Сложные:

                   а) фосфолипиды

                   б) гликолипиды

 

Высшие жирные кислоты.

Структурные компоненты липидов

Все группы липидов имеют два обязательных структурных компонента - высшие карбоновые кислоты и спирты.

Высшие жирные кислоты (ВЖК). Многие высшие карбоновые кислоты были впервые выделены из жиров, поэтому они получили название жирных. Биологически важные жирные кислоты могут быть насыщенными и ненасыщенными. Их общие структурные признаки:

•  являются монокарбоновыми;

•  содержат неразветвленную углеродную цепь;

•  включают четное число атомов углерода в цепи;

•  имеют цис-конфигурацию двойных связей (если они присутствуют).

 

Основные насыщенные жирные кислоты липидов

Описание: Описание: mb4_010

В природных кислотах число атомов углерода колеблется от 4 до 22, но чаще встречаются кислоты с 16 или 18 атомами углерода. Ненасыщенные кислоты содержат одну или несколько двойных связей, имеющих цис-конфигурацию. Ближайшая к карбоксильной группе двойная связь обычно расположена между атомами С-9 и С-10. Если двойных связей несколько, то они отделены друг от друга метиленовой группой СН2.

Описание: Описание: mb4_020

Правилами ИЮПАК для ВЖК допускается использование их тривиальных названий.

В настоящее время также применяется собственная номенклатура ненасыщенных ВЖК. В ней концевой атом углерода, независимо от длины цепи, обозначается последней буквой греческого алфавита ω (омега). Отсчет положения двойных связей производится не как обычно от карбоксильной группы, а от метильной группы. Так, линоленовая кислота обозначается как 18:3 ω-3 (омега-3).

Описание: Описание: mb4_019

Спирты. В состав липидов могут входить:

•  высшие одноатомные спирты;

•  многоатомные спирты;

•  аминоспирты.

В природных липидах наиболее часто встречаются насыщенные и реже ненасыщенные длинноцепочечные спирты (С16 и более) главным образом с четным числом атомов углерода. В качестве примера высших спиртов приведены цетиловый СH3(СН2)15ОН и мелиссиловый СН3(СН2)29ОН спирты, входящие в состав восков.

Наиболее важными аминоспиртами, входящими в состав природных липидов, являются 2-аминоэтанол (коламин), холин, относя- щийся также к α-аминокислотам серин и сфингозин.

Описание: Описание: mb4

Сфингозин - ненасыщенный длинноцепочечный двухатомный аминоспирт. Двойная связь в сфингозине имеет транс-конфигура- цию, а асимметрические атомы С-2 и С-3 - D-конфигурацию.

Описание: Описание: mb4_013

Спирты в липидах ацилированы высшими карбоновыми кислотами по соответствующим гидроксильным группам или аминогруппам. У глицерина и сфингозина один из спиртовых гидроксилов может быть этерифицирован замещенной фосфорной кислотой.

 

         ПРОСТЫЕ ЛИПИДЫ

Воски

Воски - сложные эфиры высших жирных кислот и высших одноатомных спиртов.

Воски образуют защитную смазку на коже человека и животных и предохраняют растения от высыхания. Они применяются в фармацевтической и парфюмерной промышленности при изготовлении кремов и мазей. Примером служит цетиловый эфир пальмитиновой кислоты (цетин) - главный компонент спермацета. Спермацет выделяется из жира, содержащегося в полостях черепной коробки кашалотов. Другим примером является мелиссиловый эфир пальмитиновой кислоты - компонент пчелиного воска.

Описание: Описание: mb4_007

Жиры и масла

Жиры и масла - самая распространенная группа липидов. Большинство из них принадлежит к триацилглицеринам - полным эфирам глицерина и ВЖК, хотя также встречаются и принимают участие в обмене веществ моно- и диацилглицерины.

Жиры и масла (триацилглицерины) - сложные эфиры глицерина и высших жирных кислот.

Описание: Описание: mb4_004

В организме человека триацилглицерины играют роль структурного компонента клеток или запасного вещества («жировое депо»). Их энергетическая ценность примерно вдвое больше, чем белков или углеводов. Однако повышенный уровень триацилглицеринов в крови является одним из дополнительных факторов риска развития ишемической болезни сердца.

Твердые триацилглицерины называют жирами, жидкие - маслами. Простые триацилглицерины содержат остатки одинаковых кислот, смешанные - различных.

В составе триацилглицеринов животного происхождения обычно преобладают остатки насыщенных кислот. Такие триацилглицерины, как правило, твердые вещества. Напротив, растительные масла содержат в основном остатки ненасыщенных кислот и имеют жидкую консистенцию.

Ниже приведены примеры нейтральных триацилглицеринов и указаны их систематические и (в скобках) обычно употребляемые тривиальные названия, основанные на названиях входящих в их состав жирных кислот.

Описание: Описание: mb4_004

 

Церамиды

Церамиды - это N-ацилированные производные спирта сфингозина.

Описание: Описание: mb4

Церамиды в незначительных количествах присутствуют в тканях растений и животных. Гораздо чаще они входят в состав сложных липидов - сфингомиелинов, цереброзидов, ганглиозидов и др.

 

Сложные липиды

Некоторые сложные липиды трудно классифицировать однозначно, так как они содержат группировки, позволяющие отнести их одновременно к различным группам. Согласно общей классификации липидов сложные липиды обычно делят на три большие группы: фосфолипиды, сфинголипиды и гликолипиды.

 

Фосфолипиды

В группу фосфолипидов входят вещества, отщепляющие при гидролизе фосфорную кислоту, например глицерофосфолипиды и некоторые сфинголипиды. В целом фосфолипидам свойственно достаточно высокое содержание ненасыщенных кислот.

Классификация фосфолипидов

Описание: Описание: mb4_018

Глицерофосфолипиды. Эти соединения являются главными липидными компонентами клеточных мембран.

По химическому строению глицерофосфолипиды представляют собой производные l-глицеро-З-фосфата.

l-Глицеро-З-фосфат содержит асимметрический атом углерода и, следовательно, может существовать в виде двух стереоизомеров.

Природные глицерофосфолипиды имеют одинаковую конфигурацию, являясь производными l-глицеро-З-фосфата, образующегося в процессе метаболизма из фосфата дигидроксиацетона.

Описание: Описание: mb4_002

Фосфатиды. Среди глицерофосфолипидов наиболее распространены фосфатиды - сложноэфирные производные l-фосфатидовых кислот.

Фосфатидовые кислоты - это производные l-глицеро-З-фосфата, этерифицированные жирными кислотами по спиртовым гидроксильным группам.

Описание: Описание: mb4_009

Как правило, в природных фосфатидах в положении 1 глицериновой цепи находится остаток насыщенной, в положении 2 - ненасыщенной кислоты, а один из гидроксилов фосфорной кислоты этерифицирован многоатомным спиртом или аминоспиртом (X - остаток этого спирта). В организме (рН ~7,4) оставшийся свободным гидроксил фосфорной кислоты и другие ионогенные группировки в фосфатидах ионизированы.

Примерами фосфатидов могут служить соединения, в составе которых фосфатидовые кислоты этерифицированы по фосфатному гидроксилу соответствующими спиртами:

•  фосфатидилсерины, этерифицирующий агент - серин;

•  фосфатидилэтаноламины, этерифицирующий агент - 2-ами- ноэтанол (в биохимической литературе часто, но не вполне правильно называемый этаноламином);

•  фосфатидилхолины, этерифицирующий агент - холин.

Эти этерифицирующие агенты взаимосвязаны между собой, поскольку фрагменты этаноламина и холина могут образовываться в ходе метаболизма из фрагмента серина путем декарбоксилирования и последующего метилирования при помощи S-аденозилметионина (SAM).

Описание: Описание: mb4_007

Ряд фосфатидов вместо аминосодержащего этерифицирующего агента содержит остатки многоатомных спиртов - глицерина, миоинозита и др. Приведенные ниже в качестве примера фосфатидилглицерины и фосфатидилинозиты относятся к кислым глицерофосфолипидам, поскольку в их структурах отсутствуют фрагменты аминоспиртов, придающие фосфатидилэтаноламинам и родственным соединениям нейтральный характер.

Описание: Описание: mb4_014

Плазмалогены. Менее распространены по сравнению со сложноэфирными глицерофосфолипидами липиды с простой эфирной связью, в частности плазмалогены. Они содержат остаток ненасыщенного спирта, связанный простой эфирной связью с атомом С-1 глицеро- 3-фосфата, как, например, плазмалогены с фрагментом этаноламина - L-фосфатидальэтаноламины. Плазмалогены составляют до 10% всех липидов ЦНС.

* Для удобства способ написания конфигурационной формулы остатка миоинозита в фосфатидилинозитах изменен по сравнению с приведенным выше.

Описание: Описание: mb4_003

Сфинголипиды

Сфинголипиды представляют собой структурные аналоги глицерофосфолипидов, в которых вместо глицерина используется сфинго- зин. Другим примером сфинголипидов служат рассмотренные выше церамиды.

Важную группу сфинголипидов составляют сфингомиелины, впервые обнаруженные в нервной ткани. В сфингомиелинах гидроксильная группа у С-1 церамида этерифицирована, как правило, фосфатом холина (реже фосфатом коламина), поэтому их можно отнести и к фосфолипидам.

 

Описание: Описание: mb4_017

Гликолипиды

Как можно судить по названию, соединения этой группы включают углеводные остатки (чаще D-галактозы, реже D-глюкозы) и не содержат остатка фосфорной кислоты. Типичные представители гликолипидов - цереброзиды и ганглиозиды - представляют собой сфингозинсодержащие липиды (поэтому их можно считать и сфинголипидами).

В цереброзидах остаток церамида связан с D-галактозой или D-глю- козой β-гликозидной связью. Цереброзиды (галактоцереброзиды, глюкоцереброзиды) входят в состав оболочек нервных клеток.