Нейронные сети

При современном уровне развития техники, когда даже бытовые приборы оснащаются микропроцессорными устройствами, все более актуальным становится разработка новых систем автоматического управления.

Но в связи с возрастающей сложностью объектов управления и с увеличением требований к системам управления за последнее десятилетие резко повысилась  необходимость в создании более точных, более надежных систем управлении, обладающих большими функциональными возможностями.

Интеллектуальные системы на основе искусственных нейронных сетей (ИНС) позволяют с успехом решать проблемы идентификации и управления, прогнозирования, оптимизации. Известны и другие, более традиционные подходы к решению этих проблем, однако они не обладают необходимой гибкостью и имеют существенные ограничения на среду функционирования.

Нейронные сети позволяют реализовать любой требуемый для процесса нелинейный алгоритм управления при неполном, неточном описании объекта управления (или даже при отсутствии описания), создавать мягкую адаптацию, обеспечивающую устойчивость системе при нестабильности параметров.

ИНС могут применяться для различных задач: аппроксимация функций, идентификация, прогнозирование, управление, классификация образов, категоригизация, оптимизация.

Широкий круг задач, решаемый НС, не позволяет в настоящее время создавать универсальные, мощные сети, вынуждая разрабатывать специализированные НС, функционирующие по различным алгоритмам.

Рассмотрим возможность применения искусственной нейросети регулятора. Проблема синтеза нейросетевых регуляторов рассматривается с двух позиций, а именно: прямые методы синтеза и косвенные методы синтеза нейросетевых систем управления. В данном случае рассматриваются прямые методы синтеза нейросетевых регуляторах совместно с наблюдающими  устройствами.

1. Обзор и анализ нейросетей.

Искусственные нейронные сети получили широкое распространение за последние 20 лет и позволили решать сложные задачи обработки данных, часто значительно превосходя точность других методов статистики и искусственного интеллекта, либо являясь единственно возможным методом решения отдельных задач. Нейронные сети (НС) успешно применяются в самых различных областях – бизнесе, медицине, технике, геологии, физике. Такой впечатляющий успех определяется несколькими причинами: НС исключительно мощный метод моделирования, позволяющий воспроизводить чрезвычайно сложные зависимости; они нелинейные по своей природе и кроме того, нейронные сети справляются с проблемой размерности, которая не позволяет моделировать линейные зависимости в случае большого числа переменных.

1.1. Свойства нейронных сетей.

Несомненно, что технические средства, построенные на тех же принципах, что и биологические нейронные сети, обладают рядом схожих свойств. К таким свойствам относятся:

·        массовый параллелизм,

·        распределенное представление информации и вычисления,

·        способность к обучению и способность к обобщению,

·        адаптивность,

·        свойство контекстуальной обработки информации,

·        толерантность к ошибкам,

·        низкое энергопотребление.

Можно выделить основные идеи, лежащие в основе нейронных сетей и нейромоделирования:

·  Нейросеть воспроизводит структуру и свойства нервной системы живых организмов: нейронная сеть состоит из большого числа простых вычислительных элементов (нейронов) и обладает более сложным поведением по сравнению с возможностями каждого отдельного нейрона. Нейросеть получает на входе набор входных сигналов и выдает соответствующий им ответ (выходные сигналы нейросети), являющийся решением задачи.

·  Искусственная нейросеть, как и естественная биологическая нейронная сеть, может обучаться решению задач: нейросеть содержит внутренние адаптивные параметры нейронов и своей структуры, и меняя их, может менять свое поведение.

·  Место программирования занимает обучение, тренировка нейронной сети: для решения задачи не нужно программировать алгоритм.

·  Нейронная сеть обучается решению задачи на некотором "учебнике" − наборе ситуаций, каждая из которых описывает значения входных сигналов нейросети и требуемый для этих входных сигналах ответ. "Учебник" задает набор эталонных ситуаций с известными решениями, а нейронная сеть при обучении сама находит зависимости между входными сигналами и ответами.

Аппаратная реализация ИНС – нейрокомпьютер – имеет существенные отличия (как по структуре, так и по классу решаемых задач) от вычислительных машин, выполненных в соответствии с традиционной архитектурой фон Неймана.

Искусственные нейронные сети в настоящее время широко используются при решении самых разных задач и активно применяются там, где обычные алгоритмические решения оказываются неэффективными или вовсе невозможными. В числе задач, решение которых доверяют искусственным нейронным сетям, можно назвать следующие: распознавание текстов, системы безопасности и видео-наблюдения, автоматизация процессов распознавания образов, адаптивное управление, аппроксимация функционалов, прогнозирование и это далеко не все. С помощью нейросетей можно выполнять распознавание оптических или звуковых сигналов. Аппаратные реализации ИНС идеально подходят для решения задач идентификации и управления, так как обеспечивают, благодаря параллельной структуре, чрезвычайно высокую скорость выполнения операций.

Описанные возможности в основном относятся к слоистым нейронным сетям, обучаемым алгоритмом обратного распространения, и растущим нейронным сетям на основе вариантов алгоритма каскадной корреляции. Но существуют и другие классы нейронных сетей − нейросети ассоциативной памяти, нейросети для квантования данных, сжатия данных путем построения главных независимых компонент, нейронные сети для разделения смеси сигналов и др. Т.е. круг задач, решаемых нейронными сетями, очень и очень широк, поскольку широк и сам набор нейросетевых алгоритмов.

1.2. Классификация нейронных сетей.

Существует широкий спектр достаточно универсальных способов организации инструментальных средств и собственно процесса применения нейронных сетей на различной программно-аппаратной базе. Всегда можно подобрать наиболее оптимальный для некоторой задачи − всё определяется свойствами задачи и требованиями к решению.

Однако применение нейросетей осложняется рядом причин. Нельзя придумать какую то одну универсальную ИНС, которая бы подошла для различных типов задач. Нейросети используют в двух вариантах:

1)    Строится нейросеть, решающая определенный класс задач,

2)    Под каждый экземпляр задачи строится некоторая нейросеть, находящая квази-оптимальное решение этой задачи.

Наиболее распространенным семейством сетей прямого действия являются многослойные персептроны, в них нейроны расположены слоями и соединены однонаправленными связями, идущими от входа к выходу сети. Сети прямого действия являются статическими в том смысле, что на заданный вход они вырабатывают одну совокупность выходных значений, не зависящих от предыдущего состояния сети.

Рекуррентные сети являются динамическими, так как в силу обратных связей в них модифицируются входы нейронов, что приводи к изменению состояния сети. Поведение рекуррентных сетей описывается  дифференциальными или разностными уравнениями, как  правило, первого порядка. Это гораздо расширяет области применения нейросетей и способы их обучения.  Сеть организована так, что  каждый нейрон  получает входную информацию  от других нейронов, возможно, и от самого себя, и от  окружающей среды.

Так же можно выделить два основных подхода к  реализации  нейросетей: цифровой и аналоговый. Преимуществом аналоговых  реализаций являются: высокое быстродействие, надежность и экономичность. Однако сфера возможного  массового  использования обучаемых аналоговых нейрочипов достаточно узка. Это  обусловлено большой сложностью аппаратной реализации высокоэффективных обучающих алгоритмов и необходимостью специальной подготовки потенциальных пользователей для оптимальной организации адаптивного  процесса. В то же время широкое распространение могут  получить обученные аналоговые нейрокомпьютеры  (нейросети) с фиксированной или незначительно подстраиваемой  структурой связей – нейропроцессоры.

Задача создания нейропроцессоров сводится к обучению цифровой нейросетевой модели нужному поведению  на  обычном цифровом компьютере.

Сети также можно классифицировать по числу слоев. В этом случае важную роль играет нелинейность активационной функции, так как, если бы она не обладала данным свойством или не входила в алгоритм работы каждого нейрона, результат функционирования любой n-слойной нейронной сети сводился бы к перемножению входного вектора сигналов φ на матрицу весовых коэффициентов. То есть фактически такая нейронная сеть эквивалентна однослойной нейросети с весовой матрицей единственного слоя W. Кроме того, нелинейность иногда вводится и в синаптические связи.

1.3. Структура и принципы работы нейронной сети.

В качестве модели нейрона был выбран бинарный пороговый элемент, вычисляющий взвешенную сумму входных сигналов и формирующий на выходе сигнал величины 1, если эта сумма превышает определенное пороговое значение, и 0 – в противном случае. К настоящему времени данная модель не претерпела серьезных изменений. Были введены новые  виды активационных функций. На вход искусственного нейрона поступает некоторое множество сигналов, каждый из которых является выходом другого нейрона, или входным сигналом нейросетевой модели. Каждый вход умножается на соответствующий вес, аналогичный синаптической силе биологического нейрона. Вес определяет, насколько соответствующий вход нейрона влияет на его состояние. Все произведения суммируются, определяя уровень активации нейрона s.

Нейроны могут группироваться в сетевую структуру различным образом. Функциональные особенности нейронов и способ их объединения в сетевую структуру определяет особенности нейросети. Для решения задач идентификации и управления наиболее адекватными являются многослойные нейронные сети (МНС) прямого действия или многослойные персептроны. При проектировании МНС нейроны объединяют в слои, каждый из которых обрабатывает вектор сигналов от предыдущего слоя. Минимальной реализацией является двухслойная нейронная сеть, состоящая из входного (распределительного), промежуточного (скрытого) и выходного слоя.

Персептрон представляет собой сеть, состоящую из нескольких последовательно соединенных слоев формальных нейронов. На низшем уровне иерархии находится входной слой, состоящий из сенсорных элементов, задачей которого является только прием и распространение по сети входной информации. Далее имеются один или, реже, несколько скрытых слоев. Каждый нейрон на скрытом слое имеет несколько входов, соединенных с выходами нейронов предыдущего слоя или непосредственно со входными сенсорами φ1..φn, и один выход. Нейрон характеризуется уникальным вектором настраиваемых параметров θ. Функция нейрона состоит в вычислении взвешенной суммы его входов с дальнейшим нелинейным преобразованием ее в выходной сигнал:

1.4. Обучение нейронной сети.

Следующий этап создания нейросети – это обучение. Способность к обучению является основным свойством мозга. Для искусственных нейронных сетей под обучением понимается процесс настройки архитектуры сети (структуры связей между нейронами) и весов синаптических связей (влияющих на сигналы коэффициентов) для эффективного решения поставленной задачи. Обычно обучение нейронной сети осуществляется на некоторой выборке. По мере процесса обучения, который происходит по некоторому алгоритму, сеть должна все лучше и лучше (правильнее) реагировать на входные сигналы.

Выделяют три типа обучения: с учителем, самообучение и смешанный. В первом способе известны правильные ответы к каждому входному примеру, а веса подстраиваются так, чтобы минимизировать ошибку. Обучение без учителя позволяет распределить образцы по категориям за счет раскрытия внутренней структуры и природы данных, выходы НС формируются самостоятельно, а веса изменяются по алгоритму, учитывающему только входные и производные от них сигналы. При смешанном обучении комбинируются два вышеизложенных подхода.

Поскольку ошибка зависит от весов нелинейно,  получить  решение в аналитической форме  невозможно, и поиск  глобального минимума осуществляется посредством итерационного процесса – так называемого обучающего алгоритма. Разработано  уже более сотни разных  обучающих алгоритмов, отличающихся друг от друга стратегией оптимизации и критерием ошибок. 

Отметим два свойства полной ошибки. Во-первых, ошибка E=E(W) является функцией состояния W, определенной на пространстве состояний. По определению, она принимает неотрицательные значения. Во-вторых, в некотором обученном состоянии W*, в котором сеть не делает ошибок на обучающей выборке, данная функция принимает нулевое значение. Следовательно, обученные состояния являются точками минимума введенной функции E(W).

Таким образом, задача обучения нейронной сети является задачей поиска минимума функции ошибки в пространстве состояний 

1.5. Нейросетевые системы управления.

Нейроуправление представляет собой новое высокотехнологичное направление в теории управления, активно развивающееся во всем мире с конца 70-х годов. Нейронные сети являются предметом исследования целого ряда дисциплин. С точки зрения теории управления нейронные сети выбираются в качестве модели объекта управления или непосредственно регулятора, а динамический процесс ее настройки  представляет собой процесс синтеза системы управления.

2. Применение нейросетей для решения практических задач

Классификация образов. Задача состоит в определении принадлежности входного образа (например, языкового сигнала или рукописного символа), представленного вектором признаков к одному или нескольким предварительно определенным классам. К известным приложениям относятся распознавание букв, распознавание языка, классификация сигнала электрокардиограммы, классификация клеток крови.

Кластеризация/категоризация. При решении задачи кластеризации, обучающее множество не имеет меток классов. Алгоритм кластеризации основан на подобии образов и помещает похожие образы в один кластер. Известны случаи применения кластеризации для добычи знаний, сжатия данных и исследования свойств данных.

Аппроксимация функций. Предположим, что есть обучающая выборка ((x1,y1), (x2,y2)..., (xn,yn)) (пары данных вход-выход), которая генерируется неизвестной функцией F, искаженной шумом. Задача аппроксимации состоит в нахождении неизвестной функции F. Аппроксимация функций необходима при решении многочисленных инженерных и научных задач моделирования.

Предвидение/прогноз. Пусть заданы n дискретных отсчетов {y(t1), y(t2), ..., y(tn)} в последовательные моменты времени t1, t2,..., tn . Задача состоит в предвидении значения y(tn+1) в следующий момент времени tn+1. Предвидение/прогноз имеют большое значение для принятия решений в бизнесе, науке и технике (предвидение цен на фондовой бирже, прогноз погоды).

Оптимизация. Многочисленные проблемы в математике, статистике, технике, науке, медицине и экономике могут рассматриваться как проблемы оптимизации. Задачей алгоритма оптимизации является нахождение такого решения, которое удовлетворяет системе ограничений и максимизирует или минимизирует целевую функцию.

Память, адресуемая по смыслу. В традиционных компьютерах обращение к памяти доступно только с помощью адреса, не зависящего от содержания памяти. Более того, если допущена ошибка в вычислении адреса, то может быть найденная совсем другая информация. Ассоциативная память или память адресуемая по смыслу, доступна по указанию заданного содержания. Содержимое памяти может быть вызвано даже по частичному входу или поврежденном содержании. Ассоциативная память может быть использована в мультимедийних информационных базах данных.

Управление. Рассмотрим динамическую систему, заданную совокупностью {u(t), y(t)}, где u(t) - входное управляющее воздействие, а y(t) - выход системы в момент времени t. В системах управления с эталонной моделью целью управления является расчет такого входного воздействия u(t), при котором система действует по желательной траектории, заданной эталонной моделью. Примером является оптимальное управление двигателем.

Но, несмотря на преимущества нейронных мереж в отдельных областях над традиционными вычислениями, существующие нейросети не являются совершенными решениями. Они обучаются и могут делать "ошибки". Кроме того, нельзя гарантировать, что разработанная сеть будет оптимальной сетью. Применение нейросетей требует от разработчика выполнения ряда условий:

·         множество данных, содержащих информацию, что характеризует проблему;

·         соответственно установленное по размерам множество данных для обучения и тестирования сети;

·         понимание базовой природы решаемой проблемы;

·         выбор функции сумматора, передаточной функции и методов обучения;

·         понимание инструментальных средств разработчика;

·         соответствующая мощность обработки.

Новые возможности вычислений требует умений разработчика вне границ традиционных вычислений. Сначала, вычисления были лишь аппаратными и инженеры сделали его работающими. Потом, были специалисты по программному обеспечению: программисты, системные инженеры, специалисты по базам данных и проектировщики. Теперь появились нейронные архитекторы. Новый профессионал должен иметь квалификацию, выше чем у предшественников. Например, он должен знать статистику для выбора и оценивания обучающих и тестовых множеств.

При создании эффективных нейросетей, важным для современных инженеров программного обеспечения является логическое мышление, эмпирическое умение и интуиция.

3.Нейросети в медицине

Диагностика играет в медицине важнейшую роль, и постановка диагноза требует от врача большого мастерства, знаний и интуиции. Точность диагноза и быстрота, с которой его можно поставить, зависят, разумеется, от очень многих факторов: от состояния больного, от имеющихся данных о симптомах и признаках заболевания и результатах лабораторных анализов, от общего объема медицинской информации о наблюдении таких симптомов при самых различных заболеваниях и, наконец, от квалификации самого врача. Своевременно поставленный точный диагноз часто облегчает выбор метода лечения и значительно повышает вероятность выздоровления больного. Исходя из всех этих соображений, вполне естественно попытаться определить условия, при которых диагноз может быть поставлен максимально быстро и точно. В течение многих веков врачи с переменным успехом предпринимали попытки решить эту задачу. Однако в последние годы благодаря применению современных методов лечения и диагностики, основанных на новейших достижениях науки и техники, возможности получения успешных результатов значительно возросли. Поэтому важно найти точные методы описания, исследования, оценки и контроля процесса постановки диагноза. Нейронные сети – мощный метод для решения задач распознавания образов в ситуациях, когда в экспериментальных данных отсутствуют значительные фрагменты информации, а имеющаяся информация предельно зашумлена.

Также в медицинской диагностике распространен дискриминантный анализ. При его использовании главным показателем является точность классификации.

Нейронные сети представляют собой нелинейные системы, позволяющие гораздо лучше классифицировать данные, чем обычно используемые линейные методы. В приложении к медицинской диагностике они дают возможность значительно повысить специфичность метода, не снижая его чувствительности.

В отличие от традиционных средств обработки информации, программирование нейронных сетей осуществляется неявно в процессе обучения. Обучение строится следующим образом: существует так называемый задачник, то есть набор примеров с заданными ответами. Эти примеры предъявляются системе. Нейроны получают условия примеров и преобразуют их. Далее нейроны несколько раз обмениваются преобразованными сигналами и, наконец, выдают ответ в виде набора сигналов. Отклонение от правильного ответа штрафуется. Обучение заключается в минимизации штрафа как неявной функции связей.

Важнейшее свойство нейронных сетей, свидетельствующее об их огромном потенциале и широких прикладных возможностях, состоит в параллельной обработке информации одновременно всеми нейронами. Благодаря этой способности при большом количестве межнейронных связей достигается значительное ускорение процесса обработки информации. Очень большое количество межнейронных соединений приводит к тому, что сеть становится нечувствительной к ошибкам, возникающим в отдельных контактах. Функции поврежденных соединений принимают на себя другие элементы, в результате в деятельности сети не наблюдаются заметные нарушения. Другое не менее важное свойство нейронной сети состоит в способности к обучению и к обобщению полученных знаний .

Дискриминантный анализ – это раздел математической статистики, содержанием которого является разработка методов решения задач различения (дискриминации) объектов наблюдения по определенным признакам. При использовании метода дискриминантного анализа главным показателем является точность классификации, и этот показатель можно легко определить, оценив долю правильно классифицированных при помощи прогностического уравнения наблюдений. Если исследователь работает с достаточно большой выборкой, применяется следующий подход: выполняется анализ по части данных, а затем прогностическое уравнение применяется для классификации наблюдений во второй половине данных. Точность прогноза оценивается, т.е. происходит перекрестная верификация. В дискриминантном анализе существуют методы пошагового отбора переменных, помогающие осуществить выбор предсказывающих переменных

 

В последнее время сильно возрастает значение информационного обеспечения деятельности, в том числе медицинской. Это становится движущим фактором развития науки, что обусловливает разработку и внедрение разных информационных систем.

Разработка математических методов решения медико-биологических задач началась в XX веке — исследователи изобрели много способов проверки гипотез и выводов. В 60-е годы были разработаны методы анализа, общим признаком которых явилось наличие явных алгоритмов принятия решений. Наиболее популярные методы до сих пор активно используются в теоретической медицине, однако в клинической практике они не нашли широкого применения.

Многолетние исследования, проводимые с различными явными алгоритмами, показали, что медицинские задачи, имеющие неявный характер (а таких задач большинство), решаются явными методами с точностью и удобством, неприемлемыми для широкого практического использования в конкретных задач диагностики, прогнозирования и принятия решений.

Поиски и изучение неявных алгоритмов, позволяющих автоматически накапливать и затем использовать опыт при обучении, продолжаются уже более 100 лет. Однако первые серьезные попытки создания нейронных сетей были сделаны в 40—50-х гг., когда У.Маккалок и У.Питтс вы­двинули основное положение теории работы головного мозга. В дальнейшем их идеи блестяще развил Ф.Розенблатт, который сформулировал принципы нейродинамики. В связи с появлением относительно дешевой компьютерной техники произошла своего рода революция в мире вычислительной математики и кибернетики, приведшая к формированию новой науки — нейроинформатики. Неявные задачи медицины и биологии явились идеальным полем для применения нейросетевых технологий, и именно в этой области наблюдается наиболее яркий практический успех нейроинформационных методов.

Рассмотрим, что представляет собой искусственная нейронная сеть и каковы принципы ее функционирования. Нейронная сеть, которая является основой работы самообучающихся нейропрограмм, представляет собой совокупность «нейронов» — простых элементов, связанных между собой определенным образом. «Нейроны» и межнейронные связи задаются при помощи программирования на обычном компьютере. Структура взаимосвязей между «нейронами» в нейрокомпьютере или нейропрограмме аналогична таковой в биологических объектах. Искусственный «нейрон» имеет коммуникации с другими «нейронами» через «синапсы», передающие сигналы от других «нейронов» к данному («дендриты») или от данного «нейрона» к другим («аксон»). Несколько «нейронов», связанных между собой определенным образом, и образуют нейронную сеть.

Нейросеть, так же, как и мозг, ее биологический аналог, должна иметь каналы для связи с внешним миром. Одни каналы обеспечивают поступление информации из внешнего мира на нейросеть, другие выводят информацию из нейросети во внешней мир. Поэтому одни «нейроны» сети рассматриваются как входные, другие — как выходные. Часть «нейронов» может не сообщаться с внешним миром, а взаимодействовать с входными, выходными и такими же «нейронами».

В случае эмуляции нейросети на обычном компьютере все математические операции осуществляет программа. Таким образом, нейронная сеть, получающая на входе некоторый сигнал, способна после прохода его по «нейронам» выдавать на выходе определенный ответ, который зависит от весовых коэффициентов всех «нейронов» и от самого сигнала. Обучение нейронной сети происходит на обучающей выборке, состоящей из примеров, каждый из которых представляет собой типовую задачу с индивидуальным набором условий и конкретным ответом. Например, в качестве входных сигналов в примере могут использоваться формализованные определенным образом данные исследования одного больного (анамнез, жалобы, данные объективного обследования, дополнительных методов исследования), тогда заранее известным ответом в этом примере может быть либо диагноз, либо прогноз наступления какого-либо исхода, осложнения (естественно, для этого нужен катамнез). Несколько примеров с разными ответами образуют задачник, который располагается в базе данных. Каждая запись в базе данных является примером.

Не останавливаясь на математических алгоритмах, подробно описанных в работах рассмотрим общий обучающий алгоритм для нейросети: сначала из обучающей выборки берется пример, его входные параметры подаются на входные «синапсы» обучаемой нейросети. Затем нейросеть производит заданное количество тактов функционирования, при этом вектор входных сигналов распространяется по связям между «нейронами» (прямое функционирование). Измеряются сигналы, выданные теми «нейронами», которые считаются выходными. После этого производится интерпретация выданных сигналов и вычисляется оценка, характеризующая различие между выданным сетью ответом и требуемым ответом, имеющимся в примере. Если оценка примера равна нулю, ничего не предпринимается. В противном случае на основании оценки вычисляются поправочные коэффициенты для каждого синаптического веса матрицы связей, после чего производится подстройка синаптических весов (обратное функционирование). В коррекции весов синапсов и заключается обучение. В завершение осуществляется переход к следующему примеру задачника, и вышеперечисленные операции повторяются.

Итак, определим преимущества нейросетевых экспертных систем перед обычными.

Нейросети принимают решения на основе опыта, приобретаемого ими самостоятельно.

Решение, принимаемое нейросетью, не является категоричным. Сеть выдает решение вместе со степенью уверенности в нем, что оставляет пользователю возможность критически оценивать ее ответ.

Нейросеть позволяет моделировать ситуацию принятия решения.

Нейросети дают ответ очень быстро (доли секунды), что позволяет использовать их в различных динамических системах, требующих незамедлительного принятия решения, например при интраоперационном нейромониторинге.

Возможности нейросетей (коррекция классификационной модели, минимизация обучающих параметров и др.) позволяют определять направления научного поиска.

Очевидно, что все вышеизложенное доказывает необходимость, актуальность и востребованность использования искусственных нейронных сетей для решения медицинских задач. По нашему мнению, использование нейросетевых технологий открывает качественно иной уровень изучения процессов в такой стохастической системе, как человеческий организм. Особенно полезными кажутся возможности моделирования при ургентных состояниях, встречающихся в хирургической практике, (таких как черепно-мозговая травма, например), а также возможности прогнозирования, поскольку степень воздействия на организм при хирургических вмешательствах крайне высока, и было бы не лишним иметь инструмент, помогающий предвидеть течение событий после разных способов воздействия.

Учитывая это стали применять нейросети для решения задач предикции при некоторых нозологических формах, лечение которых чаще бывает оперативным. В рамках изучения болевого синдрома в поясничной области было исследовано его течение у 295 больных остеохондрозом поясничного отдела позвоночника.

В качестве входных сигналов были взяты: данные официального анамнеза (3 признака), субъективное описание больным своей боли (3 признака), объективные характеристики течения болевого феномена (2 признака), некоторые данные анамнеза, касающиеся развития болевого синдрома (2 признака), данные неврологического осмотра (10 признаков), информация о типе лечения (2 признака). В качестве выходного сигнала для одной нейросети был выбран 1 признак — показанность хирургического вмешательства; для другой — результат лечения, т.е. наличие или отсутствие боли в пояснице после проведенного лечения.

Опыты с первой нейросетью были начаты раньше, так как не требовали наличия собранного катамнеза. Была использована трехслойная сеть, количество «нейронов» составило 52. В процессе работы нейросеть обучалась плохо, что связано, видимо, с неадекватным количеством входных параметров, а также необъективностью и внутренней неоднородностью выходного сигнала.

Вторая нейросеть по структуре была идентична первой, поэтому ее ждали те же проблемы. Для исключения их был разработан специальный опросник для больного с поясничной болью, состоящий из 2 частей (заполняемой пациентом и врачом соответственно) и содержащий 136 опций. Одновременно был начат сбор катамнеза с тем, чтобы повысить объективность выходного параметра для обучения нейросети. В настоящее время отдаленные результаты прослежены у 32 пациентов со средним сроком после операции 38 мес. При сборе катамнеза акцент делался на динамику болевого синдрома, работающая с использованием жесткого алгоритма на основе теоремы Байеса. Несмотря на малое количество катамнестических наблюдений, была создана трехслойная нейросеть с числом «нейронов» — 138, которая была обучена и протестирована. Обучение прошло без каких —либо сложностей, специфичность и чувствительность (68 и 72% соответственно) Таким образом, данная нейросеть способна прогнозировать наличие или отсутствие болевого синдрома при поясничном остеохондрозе позвоночника после хирургического лечения, т.е. прогнозировать результат операции.

Так, нейросеть была использована для прогнозирования исходов хирургического вмешательства и течения послеоперационного периода у больных, перенесших операцию протезирования клапанов сердца. Входными сигналами служили дооперационные и интраоперационные факторы. Из дооперационных показателей вводились следующие: вид порока, его длительность, клинико-функциональный класс по NYHA, кардиоторакальный индекс, индекс Мура, данные электрокардиограммы в формализованном виде, данные ультразвукового исследования сердца конечно-диастолический размер, фракция выброса левого желудочка, размеры полостей левого и правого предсердий, правого желудочка, степень стеноза/дилатации пораженного клапана, степень кальциноза), данные лабораторных исследований, учитывалась причина развития порока, степень активности процесса и срок госпитализации пациента до операции. В качестве интраоперационных факторов были введены данные о длительности искусственного кровообращения, времени пережатия аорты, применении гипотермии, объеме кардиоплегирующего раствора, о восстановлении сердечной деятельности, о виде операции, применяемом протезе клапана, его размере и о сроке пребывания в отделении реанимации после операции.

В медицине важно найти точные методы описания, исследования, оценки и контроля процесса постановки диагноза. Наилучший путь к точности и логике рассуждений при решении любой задачи – это математический подход. В принципе этот подход можно выбирать независимо от того, насколько труден и сложен рассматриваемый вопрос. Если мы имеем дело с большим числом взаимозависимых факторов, обнаруживающих значительную естественную изменчивость, то для достаточно эффективного описания сложной схемы их влияния существует лишь один способ – использование соответствующего статистического метода. Если число факторов или число категорий данных очень велико, то желательно, или даже необходимо, использовать компьютер, чтобы искомые результаты можно было получить за достаточно короткое время. Такой подход ни в коей мере не умаляет диагностических способностей врача. Напротив, он открывает еще больший простор для проявления этих качеств, освобождая врача от необходимости заниматься такими проблемами, которые можно сформулировать в численной и логической форме и, следовательно, решать математическими методами и с помощью вычислительной техники.

Имеющиеся в настоящее время данные свидетельствуют о том, что вычислительные машины, несомненно, могут играть важную роль при постановке диагноза; оценке точности диагнозов, которые ставят врачи, с целью повышения общего уровня диагностики; создании учебных пособий для студентов, а также для сбора, обобщения и обработки клинических данных для квалифицированного использования их врачами при постановке диагноза.