Диференціальне числення
Поняття похідної
Нехай у = f(x) є неперервна функція аргументу х, визначена на інтервалі (a, b). Візьмемо деяке значення незалежної змінної х і надамо її деякого приросту Dх. Тоді функція y = f(x) набуде приросту
Dу = f(x + Dx) – f(x)
(1)
Відношення
є
тангенсом кута нахилу січної до осі Ох. При
січна
прямує до дотичної в точці Р. Тангенсом кута a нахилу дотичної до осі Ох при
цьому буде границя відношення
.
Означення.
|
Функція у = f(x)
називається диференційовною в
|
(2) |
Значення
границі при цьому називається похідною функції
у = f(x) у точці х0 і
позначається
Означення. Функція називається диференційовною на інтервалі І, якщо вона диференційовна в кожній точці х цього інтервалу.
Кожному значенню х із області диференційовності функції f (x) ставиться у відповідність її похідна в точці х. Отже, дістаємо похідну функцію, яку позначаємо f¢ (x). Дія відшукання похідної функції f (x) називається диференціюванням.
·
Похідні основних
елементарних функцій
1. Похідна степеневої функції
.
2. Похідна показникової функції
![]()
¨ Диференціальне відношення (1) дорівнює
.
Згідно з наслідком 4 із підрозд. 4.2.6 маємо:
.
Отже,
.
У частинному випадку при а = е дістаємо:
.
3. Похідна логарифмічної функції

¨ Записуємо диференціальне відношення (1):

Користуючись другою визначною границею, дістаємо
.
Отже, при
шукана
похідна подається так:

Зокрема, коли а = е, маємо:
.
¨
4. Похідні тригонометричних функцій

¨ 1. Для функції у = sinx диференціальне відношення (1) подається так:
.
Згідно з першою визначною границею маємо:
.
Отже,
.
2. Аналогічно для функції у = cosx дістаємо:

3. Для функції у = tgх диференціальне відношення (1) набуває вигляду:
![]()
Згідно з наслідком 1 і п.
4.2.5
.
Отже,
.
4. Аналогічно для функції у = ctgx записуємо:
![]()
Правила диференціювання
|
Правило 1. Похідна сталої дорівнює нулеві (сonst)¢ = 0. |
¨
¨
.
|
Правило 2. Якщо u — будь-яка диференційовна функція від х і с — довільна стала, то (cu) ¢ = cu¢. |
¨![]()
![]()
|
Правило 3. Якщо u та v — диференційовні функції від х, то їх сума u + v є диференційовною функцією:
Аналогічно, похідна суми будь-якого скінченного числа диференційовних функцій дорівнює похідним цієї функції:
|
¨ Нехай у = u + v. Якщо Du і Dv — прирости функцій u та v відносно приросту Dх аргументу х, то приріст функції у такий:
.
Остаточно маємо:
![]()
|
Правило 4. Добуток двох диференційовних функцій u та v є диференційовною функцією
|
Нехай у = uv, де u і v — диференційовні функції від х; ∆х — приріст аргументу х; Du і Dv — прирости u і v. Тоді приріст функції у буде такий:
![]()
Отже,
.
Коли Dх прямує до нуля, маємо:
.
Тоді
![]()
![]()
![]()
¨
Похідна добутку n функцій:
|
Правило 5. У точках, в яких
|
¨
Розглянемо точки, в яких виконуються умови:
;
u i v — диференційовні.
Нехай х набуває приросту Dх; Dу, Du, Dv — відповідні прирости функцій у, u і v.
Якщо
в
точці х,
,
коли Dх близьке до нуля. Тоді виконується рівність
.
Віднімаючи від неї вираз
,
дістаємо:
,
або
.
Якщо Dх прямує до 0, маємо:
.
¨
Похідна оберненої функції
Теорема 1. Якщо функція у = f(x) монотонна й має в точці х відмінну від нуля похідну, то функція, обернена до даної, подається у вигляді х = g(y) і має похідну х = g(y), обернену до похідної даної функції:
. (4)
Доведення. Нехай Dу — приріст змінної у, а Dх — відповідний приріст змінної х. Тоді
.
Звідси
.
Оскільки обернена функція також неперервна, дістаємо
.
Отже,
.
Похідні обернених тригонометричних функцій:

Якщо
,
то для функцій
оберненими
є відповідно такі:

За теоремою 1 маємо:
;
;
;
.
Похідна складної функції
|
Правило 6. |
Теорема 2. Похідна складної функції
правило ланцюга. |
Доведення. Позначимо u = j(х). Тоді у = f(u). Знайдемо прирости функцій у = f(u), u = j(x):
![]()
Далі запишемо диференціальне відношення (1):

Коли
то
й
.
Тому
![]()
.
Логарифмічна похідна
Нехай у = f(x) диференційовна функція. Тоді можемо записати
(6)
При f(x)
> 0, безпосередньо маємо (6); при f(x) < 0 дістаємо
.
Отже,
.
Означення. Похідна функції
,
обчислена за формулою (6), називається логарифмічною похідною f
у точці х.
Якщо
і
,
дістаємо такі формули для обчислення логарифмічних похідних функцій F(x)
i G(x):
(7)
Похідна показниково-степеневої функції
Означення. Функція
називається
показниково-степеневою функцією.
Прологарифмуємо рівняння
![]()
.
Продиференціюємо обидві частини останнього рівняння:

(9)
Правило
диференціювання
показниково-степеневої функції:
Щоб знайти похідну показниково-степеневої функції, потрібно спочатку продиференціювати її як показникову, а потім як степеневу функцію. Результати додати
1. Нехай функція y = f(x) є показниковою:
,
тобто
.
.
,
тобто v(x) = a.
Тоді
![]()
Похідні вищих порядків
Нехай у = f(x) — деяка диференційовна функція на інтервалі І, причому похідна цієї функції у¢ = f¢(x) також є диференційовною функцією на зазначеному інтервалі. Похідна функції f ¢(x) називається похідною другого порядку функції f і позначається f ¢¢ або f (2). Якщо f (2) диференційовна на інтервалі І, то похідна функції f (2) називається похідною третього порядку функції f (х) і позначається f (2).
Аналогічно, похідною n-го порядку f (n) функції f (х) за індукцією називається похідна функції f (n-1), якщо вона існує і диференційовна.
Іноді замість позначення f (n)(х)
застосовують символ
або
Dny, Dnf(x).
Правила
знаходження
похідних n-го порядку
На похідні n-го порядку легко поширюються правила, розглянуті в підрозд. 5.1.3.
Очевидно, виконуються рівності:
![]()
![]()
Виведемо так звану формулу Лейбніца, яка дає змогу обчислювати похідну n-го порядку від добутку двох функцій u(x) та v(x). Для того щоб вивести цю формулу, знайдемо спочатку кілька похідних, а далі встановимо загальне правило:

Закон утворення похідних зберігається для похідних будь-якого порядку й полягає ось у чому:
Вираз
(u + v)n потрібно розкласти за формулою бінома Ньютона й у
здобутому розкладі замінити показники степенів для u та v показниками порядку
похідних, причому нульові степені
(u0 = v0), що входять у крайні члени розкладу, слід замінити
самими функціями (тобто похідними нульового порядку):
.
Це є формула Лейбніца.
Зауваження. Повне доведення цієї формули можна подати методом повної математичної індукції [9].
Поняття диференціала
Нехай функція у = f(x)
диференційовна в інтервалі
.
З означення диференційовності маємо:
![]()
Звідси можна записати:
(1)
де функція
при
задовольняє
умову
![]()
Із (1) для приросту функції дістаємо:
![]()
Покладемо,
що
.
Означення. Величина f¢(x)Dх називається диференціалом функції f(x) за приростом Dх.
Позначення: ![]()
Геометрична інтерпретація:
Диференціал
є
лінійним наближенням (апроксимацією) до приросту функції:
.
Наскільки менше
,
настільки краще наближення (апроксимація)
Правила обчислення диференціала
Правило 1. Нехай
.
Тоді![]()
або
![]()
Правило 2. Дано
.
Тоді ![]()
![]()
Правило 3. Маємо
,
.
Тоді
![]()
![]()
Правило 4. Якщо
,
,
то
![]()
Правило 5. Якщо функція
має
обернену
,
то
.
Правило 6. Якщо функції задані у параметричному вигляді
,
,
.