ПРОИЗВОДСТВО ИНЪЕКЦИОННЫХ РАСТВОРОВ.

Лекарственные средства для парентерального применения – это стерильные препараты, предназначенные для введения путем инъекций, инфузий или имплантаций в организм человека или животного. К ним относятся растворы, эмульсии, суспензии, порошки и таблетки для получения растворов и имплантации, лиофилизированные препараты, вводимые в организм парентерально (подкожно, внутримышечно, внутривенно, внутриартериально, в различные полости).

В настоящее время среди всех готовых лекарственных средств, выпускаемых отечественной фармацевтической промышленностью, на долю парентеральных препаратов приходится около 30%. Инъекционные лекарственные формы занимают значительное место в номенклатуре лекарственных средств. На инъекционные препараты в различных фармакопеях мира приходится от 10% до 15% статей.

Инъекции (впрыскивания) – это обособленная группа жидких лекарственных форм, вводимых в организм при помощи специальных устройств с нарушением целостности кожных или слизистых покровов.

Инфузии (влияния) – стерильные лекарственные формы, вводимые в организм паретретально в количествах более 100 мл капельно или струйно.

Инъекционные растворы – сравнительно молодая лекарственная форма. Впервые подкожно впрыскивания лекарств были осуществлены в начале 1851 года русским врачом Владикавказского военного госпиталя Лазаревым.

Специальные стеклянные сосуды – ампулы, рассчитанные на разовый прием помещенного в них стерильного раствора лекарственного вещества, были предложены петербургским фармацевтом  профессором А.В.Пелем в 1885 году. Независимо друг от друга и почти одновременно сведения об ампулах содержали также опубликованные в фармацевтических журналах сообщения немецких аптекарей Фридлендера, Марпманна, Лютце, австрийца Бернатуика и француза Станислава Лимузина. В то время еще не существовало развитой фармацевтической промышленности, поэтому аптекарь был вынужден сам изготавливать ампулы или обращаться к стеклодуву. В дальнейшем в связи с расширением номенклатурыинъекционных растворов, увеличением потребности в них, а также с усложнением прописей их производство было организовано на фармацевтических фабриках и заводах.

Парентеральный путь введения в организм лекарств имеет ряд преимуществ перед другими методами:

·        быстрое действие и полная биологическая доступность лекарственного вещества;

·        точность и удобство дозирования;

·        возможность введения лекарственного вещества больному, находящемуся в бессознательном состоянии или, когда лекарство нельзя вводить через рот;

·        отсутствие влияния секретов ЖКТ и ферментов печени, что имеет место при внутреннем употреблении лекарств;

·        возможность создания больших запасов стерильных растворов, что облегчает и ускоряет их отпуск из аптек.

Наряду с преимуществами  инъекционный путь введения имеет и некоторые недостатки:

·        при введении жидкостей через поврежденный покров кожи в кровь легко могут попасть патогенные микроорганизмы;

·        вместе с раствором для инъекций в организм  может быть введен воздух, вызывающий эмболию сосудов или расстройство сердечной деятельности;

·        даже незначительные количества посторонних примесей могут оказать вредное влияние на организм больного;

·        психоэмоциональный аспект, связанный с болезненностью инъекционного пути введения;

·        инъекции лекарств могут осуществляться только квалифицированными специалистами.

В зависимости от способа введения инъекции подразделяются на: подкожные, внутримышечные, внутривенные, внутриартериальные, внутриполостные, внутрисуставные. В последнее время применяются менее болезненные методы безигольного введения инъекционных растворов в виде тончайшей (около 0,1-0,12 мм диаметром) струи под высоким давлением, которая выдается из отверстия специального инъектора со скоростью 300 м/с и проникает через кожный покров на глубину 3 см. C этой целью применяются ручные инъекторы типа «Пчелка», «Hynospray», «Jetinjection».

Парентеральное применение препаратов предполагает нарушение кожного покрова, что связано с возможным инфицированнием патогенными микроорганизмами и введением механических включений. Поэтому стерильное производство по сравнению с другими отраслями промышленности имеет специфические особенности, которые диктуются требованиями к инъекционным лекарственным формам. Главные из них – отсутствие механических примесей, стерильностьстабильность, апирогенность, изотоничность, изоионичность, изогидричность (последние три требования, предъявляются к отдельным инъекционным растворам, что указывается в соответствующей нормативно-технической документации (НТД)).

Уровень требований Государственной фармакопеи СССР (ГФ XI) к лекарственным средствам для парентерального применения уступает уровню требований ведущих фармакопей мира, поэтому для гармонизации национальной нормативно-технической документации (НТД) с документацией Европейского Сообщества в 2001 году разработана статья «Лекарственные средства для парентерального применения» (PARENTERALIA) Государственной фармакопеи Украины.

Согласно данной статье лекарственные средства для парентерального применения классифицируются следующим образом:

·        Инъекционные лекарственные средства;

·        Внутривенные инфузионные лекарственные средства;

·        Концентраты для инъекционных или внутривенных инфузионных лекарственных средств;

·        Порошки для инъекционных или внутривенных инфузионных лекарственных средств;

·        Имплантанты.

Требования этой статьи не распространяются  на препараты, изготовленные из человеческой крови, иммунологические и радиофармацевтические препараты, имплантируемые протезы.

Инъекционные лекарственные средства – это стерильные растворы, эмульсии или суспензии. Растворы для инъекций должны быть прозрачными и практически свободными от частиц. Эмульсии для инъекций не должны обнаруживать признаков расслоения. В суспензиях для инъекций может наблюдаться осадок, который должен быстро диспергироваться при взбалтывании, образуя суспензию. Образовавшаяся суспензия должна быть достаточно стабильной для того, чтобы обеспечить необходимую дозу при введении.

Растворители, исходные и вспомогательные вещества, применяемые для приготовления лекарственных форм для инъекций должны быть разрешенными к медицинскому применению и соответствовать требованиям нормативно-технической документации.

Внутривенные инфузионные лекарственные средства – это стерильные водные растворы или эмульсии с водой в качестве дисперсионной среды; должны быть свободны от пирогенов и обычно изотоничны крови. Предназначаются для применения в больших дозах, поэтому не должны содержать никаких антимикробных консервантов.

Концентраты для инъекционных или внутривенных инфузионных лекарственных средств – представляют собой стерильные растворы, предназначенные для инъекций или инфузий после разведения. Концентраты разводят до указанного объема соответствующей жидкостью перед применением. После разведения полученный раствор должен соответствовать требованиям, предъявляемым к инъекционным или инфузионным лекарственным средствам.

Порошки для инъекционных или внутривенных инфузионных лекарственных средств – представляют собой твердые стерильные вещества, помещенные в контейнер. При встряхивании с указанным объемом соответствующей стерильной жидкости они быстро образуют или прозрачный, свободный от частиц раствор, или однородную суспензию. После растворения или суспендирования они должны соответствовать требованиям, предъявляемым к инъекционным или инфузионным лекарственным средствам.

Имплантанты – представляют собой стерильные твердые лекарственные средства, имеющие подходящие для парентеральной имплантации размеры и форму, и высвобождающиедействующие вещества в течение длительного периода времени. Они должны быть упакованы в индивидуальные стерильные контейнеры.

Принципиальная схема ампулирования растворов

Рис. 5.1. Принципиальная схема ампулирования растворов

Создание условий к производству стерильной продукции

Для создания оптимальных условий, обеспечивающих выпуск высококачественных лекарственных форм, в последние годы разработаны требования к производству стерильной продукции, которые изложены в GMP ВОЗ “Sterile pharmaceutical products” (1992), GMP Eвропейского Cообщества (ЕС) “Manufacture of sterile medicinal products” (1997), МВ 64У-1-97 «Производство лекарственных средств. Надлежащие правила и контроль качества», ГНД 01.001.98 GMP “Належна виробнича практика GMP” (1998), “Надлежащая производственная практика лекарственных средств» (1999), “Надлежащая производственная практика лекарственных средств» (2001), Настанова 42-01-2001.

Одним из условий производства качественной стерильной и торговли ею на отечественном и зарубежных фармацевтических рынках является обеспечение качества препаратов за счет выполнения, в первую очередь, принципов и правил надлежащей производственной практики (GMP – Good manufacturing practice).

Надлежащая производственная практика (НПП) – это часть системы обеспечения качества, которая гарантирует, что продукция производится и контролируется по стандартам качества, требуемым торговой лицензией и соответствует ее назначению.

Для обеспечения всех показателей качества готовой стерильной продукции должны выполняться специальные требования, предъявляемые к проведению технологического процесса,чистоте производственных помещений, работе технологического оборудования, вентиляции и чистоте воздуха, системе подготовки основного сырья и вспомогательных материалов с целью свести к минимуму риск контаминации микроорганизмами, частицами и пирогенными веществами. Предъявляются также определенные требования к персоналу и производственной санитарии.

Соблюдение этих правил зависит, в первую очередь, от надлежащей квалификации, образования, уровня практического опыта и производственной дисциплины всего персонала.

Общие требования к производству стерильной продукции. Классы чистоты помещений

Производство инъекционных растворов осуществляют на специальных, только для этих целей предназначенных, участках. Устройство этих помещений должно обеспечивать минимум возможности загрязнения готового продукта производства, т.е. минимум мест скопления пыли, подачу воздуха контролируемой чистоты, поддержание повышенного давления. При необходимости в помещении поддерживают определенную температуру и влажность. Такие помещения называют «чистыми».

«Чистым» помещением или «чистой» комнатой называется помещение, в котором счетная концентрация аэрозольных частиц и число микроорганизмов в воздухе поддерживается в строго определенных пределах.

Под частицей понимается твердый, жидкий или многофазный объект или микроорганизм с размерами от 0,005 до 100 мкм. При классификации «чистых» помещений рассматриваются частицы от 0,1 до 5 мкм.

Важной характеристикой «чистого» помещения является его класс.

Класс «чистого» помещения характеризуется классификационным числим, определяющим максимально допустимую счетную концентрацию аэрозольных частиц определенного размера в 1 м3 воздуха.

«Чистое» помещение может содержать одну или несколько «чистых» зон. «Чистые» зоны могут быть и вне «чистого» помещения. «Чистые» зоны могут создаваться в локальных объемах: ламинарные шкафы, модули, изоляторы, блоки, укрытия и пр.

В нашей стране в «чистых» помещениях подпор воздуха должен быть равен 4 мм рт.ст., температура 23±2°С, относительная влажность 30-40%.

Влажность и температура могут меняться в зависимости от требований технологического процесса. Однако, при влажности выше 50% начинается коррозия металлических деталей, т.к. гигроскопические частицы поглощают из воздуха столько влаги, что становятся инициаторами коррозии. При низкой относительной влажности на диэлектрических металлах может накапливаться статистическое электричество, а следовательно, удерживаться частицы пыли.

Для получения воздуха с требуемыми характеристиками должны быть использованы способы, которые прошли валидацию, внесены в технологический регламент и разрешены в установленном порядке уполномоченным государственным органом.

Производство стерильных лекарственных средств должно выполняться в чистых производственных зонах, в которые доступ персонала и/или оборудования и материалов должен происходить через воздушные шлюзы. В них должна поддерживаться надлежащая степень чистоты, регламентируемая правилами GMP, а поступающий вентиляционный воздух должен проходить очистку с использованием фильтров соответствующей эффективности.

Различные операции по подготовке компонентов, приготовлению продукта и наполнению сосудов должны выполняться в раздельных зонах внутри «чистого» помещения. Производствостерильной продукции в зависимости от способа достижения стерильности подразделяют на следующие категории:

GMP EC

GMP ВОЗ

Производство, предусматривающее финишную стерилизацию.

Производство, выполняемое в асептических условиях на одном или всех этапах.

Производство, при котором продукция окончательно стерилизуется в укупоренной (герметизированной) первичной упаковке.

Производство, при котором препараты стерилизуются фильтрацией.

Производство препаратов в асептических условиях из стерильного исходного сырья и материалов.

GMP ВОЗ чистые зоны для производства стерильной продукции классифицирует в соответствии с требуемыми характеристиками воздуха на классы чистоты А, В, С и D.

Таблица

Система классификации воздуха при производстве стерильной продукции (GMP ВОЗ)

Класс чистоты

Максимально допустимое число частиц в 1 м3

Максимальное число жизнеспособных микроорганизмов, допускаемое в 1 м3 воздуха рабочей зоны

0,5-5 мкм

>5 мкм

А
(рабочее место с 
ламинарным потокомвоздуха)

3 500

Нет

Менее 1

В

3 500

Нет

5

С

350 000

2 000

100

D

3 500 000

20 000

500

В отличие от GMP ВОЗ, в правилах GMP EC чистые зоны для производства стерильной продукции классифицируются в соответствии с требуемыми характеристиками окружающей среды в функционирующем и в оснащенном состояниях.

«Оснащенное» состояние – это условие, при котором система «чистого» помещения полностью подготовлена, производственное оборудование полностью готово к работе, но персонал отсутствует.

«Функционирующее» состояние – это условие, при котором система «чистого» помещения и оборудование функционирует в установленном режиме с определенным числом работающего персонала.

GMP EC выделяет четыре класса чистоты для производства стерильной продукции.

Таблица 5.

Классификация чистых зон по максимально допустимому числу частиц в воздухе

Классы чистоты

Максимально допустимое число частиц в 1 м3 воздуха

Оснащенное состояние (b)

Функциональное состояние

0,5 мкм

5 мкм

0,5 мкм

5 мкм

А

3 500

0

3 500

0

В (а)

3 500

0

3 500

2 000

С(а)

350 000

2 000

3 500 000

20 000

D(а)

3 500 000

20 000

Не определено (с)

Класс А: Локальные зоны для технологических операций, требующих самого минимального риска контаминации, например, зоны наполнения, укупорки, вскрытия ампул и флаконов, смешивания в асептических условиях. Условия класса А предполагают рабочее место с ламинарным потоком воздуха (0,45±20%)м/с.

Класс В: Окружающая среда для зоны А в случае приготовления и наполнения в асептических условиях.

Классы С и D: Чистые зоны для ведения технологических операций, допускающих более высокий риск контаминации, при производстве стерильной продукции.

Допустимое число частиц в 1 м3 воздуха чистого помещения в оснащенном состоянии должно достигаться после короткого периода санитарной уборки в течение 15-20 минут (норма GMP ЕС) после завершения технологических операций при отсутствии персонала. Допустимое число частиц для чистой зоны класса А в функционирующем состоянии должно поддерживаться в зоне, которая непосредственно окружает продукцию, и когда продукция или открытая емкость подвергается воздействию окружающей среды.

Для достижения классов чистоты A, B и D требуется кратность воздухообмена, учитывающая размер помещения, находящиеся в нем оборудование и персонал.

Для подтверждения класса чистоты зон в функционирующем состоянии в них необходимо периодически осуществлять микробиологический контроль с использованием метода седиментации на пластины, отбора проб воздуха и с поверхностей. Следует дополнительно осуществлять микробиологический контроль, когда не проводятся технологические операции.

Таблица

Примеры операций, которые нужно выполнять в зонах различных типов (GMP EC)

Тип зоны

Операции для продукции, стерилизуемой в первичной упаковке

Операции для приготовления продукции в асептических условиях

А

Наполнение продуктом, когда риск незначителен

Приготовление и наполнение в асептических условиях

С

Приготовление растворов, когда риск незначителен, наполнение продуктом

Подготовка растворов, подлежащих фильтрации

D

Приготовление растворов и первичной упаковки для последующего наполнения

Работы с первичной упаковкой

НПП рекомендует для обеспечения стерильности продукции использовать способы производства, сводящие к минимуму или устраняющие присутствие персонала в производственных помещениях, например, полностью замкнутые и автоматизированные системы.

Использование изолирующих технологий (GMP ЕС) сокращает необходимость присутствия человека в производственных зонах, в результате чего значительно сокращается риск микробной контаминации продукции, производимой в асептических условиях, из окружающей среды. Изолирующие технологии предусматривают применение различных типов изоляторов и передаточных устройств. Изолятор и окружающая его среда должны быть спроектированы таким образом, чтобы в соответствующих рабочих зонах достигалось требуемое качество воздуха. Возможно использование полностью герметизированных систем, включающих оборудование для стерилизации.

Требования к производственным помещениям и чистоте воздушной среды

Производственные помещения необходимо проектировать, располагать, приспосабливать, оснащать, содержать и обслуживать таким образом, чтобы они соответствовали своему назначению, обеспечивали возможность проведения эффективной уборки и эксплуатации с целью исключения микробной и перекрестной контаминации, а также других факторов, которые могут отрицательно повлиять на качество продукции.

При проектировании, строительстве и реконструкции производственных помещений их объемно-планировочное решение и расположение оборудования должны соответствовать требованиям государственных строительных норм (ДБН) и других законодательных актов Украины.

Помещения следует располагать в соответствии с последовательностью технологического процесса и классов чистоты.

Не допускается примыкание помещений классов чистоты А, В, С, D к наружным ограждающим конструкциям. Помещения более высокого класса чистоты необходимо располагать внутри помещений более низкого класса. Чистые зоны следует проектировать так, чтобы отсутствовала необходимость входа в них наблюдающего или контролирующего персонала.

Доступ персонала и/или поступление исходного сырья, материалов, полупродуктов и оборудования в чистые помещения разрешается только через воздушные шлюзы. Различные операции по подготовке компонентов, приготовлению продукта и наполнению сосудов должны выполняться в раздельных зонах внутри чистого помещения.

В чистых зонах все открытые поверхности должны быть гладкими, непроницаемыми и неповрежденными, чтобы свести к минимуму образование и накопление пыли и микроорганизмов, а также обеспечить возможность многократного применения очищающих и дезинфицирующих средств. Материалы, применяемые при отделке производственных помещений, должны быть непылящими, негорючими, легко моющимися и устойчивыми к воздействию дезинфицирующих веществ.

Различные двери воздушных шлюзов не должны открываться одновременно. Для предотвращения открывания более чем одной двери необходимы системы блокирования или звуковой сигнализации. Смежные помещения с другими классами чистоты должны иметь разницу в давлении 10-15 Па (норма GMP ЕС). В каждом чистом помещении должна функционировать сигнальная система, предупреждающая о нарушении или прекращении процесса подачи стерильного воздуха.

После завершения работ помещение следует обрабатывать дезинфицирующими средствами и УФ-излучением.

Стены, пол, потолок должны быть гладкими, легко очищаемыми, а сопряжения стен между собой и стен с полом должны иметь закругления радиусом 300 мм. Стены «чистых» помещений покрывают пластмассами или эмалями. В качестве покрытия для пола используют керамическую плитку.

Санитарная подготовка помещений – одно из важнейших мероприятий по обеспечению чистоты. Цель такой обработки – сведение к минимуму механических и микробных загрязнений. Дезинфекция поверхностей приводит, как правило, к снижению микроорганизмов на 40-60% от их исходного содержания. При выборе дезинфицирующего вещества необходимо учитывать не только его бактерицидные свойства и спектр действия, но и возможную токсичность для человека. Рекомендуется при уборке применять 2-6% раствор перекиси водорода или другие дезинфицирующие средства. Хорошими дезинфицирующими свойствами обладают пары формальдегида. Однако продолжительное использование какого-либо дезинфицирующего средства приводит к образованию устойчивых штаммов. Поэтому рекомендуют дезинфицирующее средство менять каждые 14 дней.

Обеспечение производственных помещений чистым воздухом

Воздух производственных помещений – потенциальный источник загрязнения лекарств, поэтому его очистка является одним из ключевых вопросов технологической гигиены. Уровень чистоты воздуха, находящегося в помещении, определяет класс чистоты.

Для обеспечения производства стерильных растворов обеспыленным  оздухом используют как обычные системы турбулентной вентиляции, обеспечивающие стерильность воздуха в помещении, так и системы с ламинарным потоком воздуха по всей площади помещения или в определенных рабочих зонах.

При турбулентном потоке очищенный воздух содержит до 1000 частиц в 1 л, при подаче воздуха ламинарным потоком по всему объему помещения содержание частиц в воздухе в 100 раз меньше.

Помещения с ламинарным потоком – это такие помещения, в которых воздух подается по направлению к рабочей зоне через фильтры, занимающие всю стену или потолок, и удаляется через поверхность, противоположную входу воздуха.

Различают две системы: вертикальный ламинарный поток, при котором воздух движется вверх через потолок и уходит через решетчатый пол, и горизонтальный ламинарный поток, при котором воздух поступает через одну, а уходит через противоположную перфорированную стенку. Ламинарный поток уносит из комнаты все взвешенные в воздухе частицы, поступающие от любых источников (персонал, оборудование и др.).

В чистых помещениях должен создаваться ламинарный поток. Системы ламинарного воздушного потока должны обеспечивать равномерную скорость движения воздуха: около 0,30 м/с для вертикального и около 0,45 м/с для горизонтального потоков. Подготовка и контроль воздуха на механические включения и микробиологическую обсемененность, а также оценка эффективности работы воздушных фильтров должны проводиться согласно нормативно-технической документации.

На рис. 5.2 показаны различные схемы подачи обеспыленного воздуха в производственное помещение.

Схемы подачи обеспыленного воздуха

Рис. 5.2. Схемы подачи обеспыленного воздухаА – турбулентный поток; Б –ламинарный поток

Для обеспечения требуемой чистоты воздуха в системах «вертикальный ламинарный поток» и «горизонтальный ламинарный поток» в отечественной промышленности применяют фильтрующие установки, состоящие из фильтров предварительной грубой очистки воздуха – вентилятора и стерилизующего фильтра (рис. 5.3.).

Установка для фильтрации и стерилизации воздуха

Рис. 5.3. Установка для фильтрации и стерилизации воздуха1 – фильтр грубой очистки; 2 – вентилятор; 3 – фильтр тонкой очистки

Для окончательной очистки воздуха от содержащихся в нем частиц и микрофлоры применяют фильтр типа ЛАИК. В качестве фильтрующего материала в нем используется ультратонкое волокно из перхлорвиниловой смолы. Этот материал гидрофобен, стоек к химически агрессивным средам и может работать при температуре не выше 60°С и относительной влажности до 100%. В последнее время широкое распространение получили высокоэффективные воздушные фильтры НЕРА (High-efficiency particulate air).

Высокая чистота воздушной сpеды создается фильтpованием чеpез фильтp пpедваpительной очистки и далее с помощью вентилятоpа - чеpез стеpилизующий фильтp с фильтpующим матеpиалом маpки ФПП-15-3, пpедставляющим слой ультpатонких волокон из полихлоpвинилового полимеpа. Внутpи помещения дополнительно могут устанавливаться пеpедвижные pециpкуляционные воздухоочистители ВОПР-0,9 и ВОПР-1,5, котоpые обеспечивают быстpую и эффективную очистку воздуха за счет механической фильтpации его чеpез фильтp из ультpатонких волокон и ультpафиолетовой pадиации. Воздухоочистители могут использоваться во вpемя pаботы, т.к. не оказывают отpицательного влияния на пеpсонал и не вызывают непpиятных ощущений.

Для создания свеpхчистых помещений или отдельных зон внутpи него pазмещается специальный блок, в котоpый подается автономно ламинарный поток стерильного воздуха.

Отечественной промышленностью выпускаются чистые камеры типа М 825.000.000, предназначенные для проведения работ в стерильной атмосфере. Сборно-разборная камера состоит из унифицированных элементов. Основной элемент камеры – фильтровальная ячейка – содержит вентилятор, фильтры грубой и тонкой очистки, осветительные лампы и светорассеивающие решетки. Конструктивные особенности камеры позволяют создавать из элементов камеры блоки любой длины, возможно использование фильтровальной ячейки в качестве самостоятельного пылезащитного устройства, подвешенного над рабочей зоной. Обеспыленная атмосфера в камере достигается благодаря непрерывному продуванию рабочего объема камеры вертикальным ламинарным потоком обеспыленного воздуха.

Требования, предъявляемые к персоналу и спецодежде

Оснащение производства системами с ламинарным потоком и подача в помещение чистого и стерильного воздуха еще не решают проблемы чистого воздуха, т.к. работающий в помещении персонал также является активным источником загрязнения. Поэтому в чистых производственных помещениях во время работы должно находиться минимальное количество рабочих, предусмотренное соответствующими инструкциями.

В течение одной минуты человек, не двигаясь, выделяет 100 тыс. частиц. Эта цифра возрастает до 10 млн. во время интенсивной работы. Среднее количество микроорганизмов, выделяемых человеком за 1 минуту достигает 1500-3000. Поэтому защита лекарств от загрязнений, источником которых служит человек, одна из основных проблем технологической гигиены и решается она, в основном, благодаря личной гигиене сотрудников и использованию технологической одежды.

Персонал, входящий в производственное помещение, должен быть одет в специальную одежду, соответствующую выполняемым им производственным операциям. Технологическая одежда персонала должна соответствовать классу чистоты той зоны, в которой он работает, и выполнять свое основное назначение – максимально защищать продукт производства от частиц, выделяемых человеком.

Основное назначение технологической одежды работников – максимально защищать продукт производства от частиц, выделяемых человеком. Особое значение имеет ткань, из которой изготовляется технологическая одежда. Она должна обладать минимальным ворсоотделением, пылеемкостью, пылепроницаемостью, а также воздухопроницаемостью не ниже 300 м3/(м2·с), гигроскопичностью не менее 7%, не накапливать электростатического заряда. За рубежом для технологической одежды применяют ткани из полиэфирных, полипропиленовых или полиалкидных волокон. У нас в стране используется ткань из лавсана с хлопком (артикул 82138).

К персоналу и технологической одежде, предназначенной для зон разных типов, предъявляются следующие требования:

Класс D: Волосы должны быть покрыты. Следует носить защитный костюм общего назначения, соответствующую обувь или бахилы.

Класс С: Волосы должны быть покрыты. Следует носить костюм с брюками (цельный или состоящий из двух частей), плотно облегающий запястья, с высоким воротником и соответствующую обувь или бахилы. Одежда и обувь не должна выделять ворс или частицы.

В помещениях класса чистоты А/В следует носить стерильные брючный костюм или комбинезон, головной убор, бахилы, маску, резиновые или пластиковые перчатки. По возможности, следует использовать одноразовую или специализированную технологическую одежду и обувь с минимальным ворсоотделением и пылеемкостью. Нижняя часть брюк должна быть спрятана внутрь бахил, а рукава – в перчатки.

К работающим в чистых зонах необходимо предъявлять высокие требования в отношении личной гигиены и чистоты. В чистых помещениях нельзя носить ручные часы, ювелирные изделия, косметику.

Большое значение играет и частота смены одежды, зависящая от климатических условий и времени года. При наличии кондиционного воздуха одежду рекомендуется менять не реже 1 раза в день, а защитную маску каждые 2 часа. Резиновые перчатки следует менять после каждого контакта с кожей лица, а также в любом случае, когда возникла опасность их загрязнения.

Весь персонал (включая занятый уборкой и техническим обслуживанием), работающий в чистых зонах, должен проходить систематическое обучение по предметам, которые относятся к правильному производству стерильных продуктов, включая гигиену и основы микробиологии.

Требования к технологическому процессу

Производство стерильных лекарственных средств должно осуществляться по методикам, четко изложенным в технологических регламентах и производственных инструкциях, с учетом принципов и правил надлежащей производственной практики, что необходимо для получения готовой продукции требуемого качества в соответствии с регистрационной и лицензионной документацией.

Не допускается производить различные лекарственные средства одновременно или последовательно в одном и том же помещении, за исключением тех случаев, когда не существует риска перекрестной контаминации, а также смешивания и перепутывания разных видов исходного сырья, полупродуктов, материалов, промежуточной и готовой продукции.

Контроль в процессе производства, осуществляемый в производственных помещениях, не должен оказывать отрицательного влияния на технологический процесс и качество продукции.

На всех стадиях технологического процесса, включая стадии, предшествующие стерилизации, необходимо осуществлять мероприятия, сводящие к минимуму микробную контаминацию.

Интервалы времени между началом приготовления растворов и их стерилизацией или стерилизующей фильтрацией должны быть минимальны и иметь ограничения (лимиты времени), установленные в процессе валидации.

Препараты, содержащие живые микроорганизмы, запрещается производить и фасовать в помещениях, предназначенных для производства других лекарственных средств.

Источники воды, оборудование для обработки воды и обработанную воду необходимо регулярно контролировать на химическую и микробиологическую контаминацию, а также, при необходимости, на контаминацию эндотоксинами, чтобы гарантировать соответствие качества воды требованиям нормативно-технической документации.

Любой газ, контактирующий в ходе технологического процесса с растворами или другой промежуточной продукцией, должен пройти стерилизующую фильтрацию.

Материалы, которым свойственно образование волокон с их возможным выделением в окружающую среду, как правило, не должны применяться в чистых помещениях, а при ведении технологического процесса в асептических условиях их использование полностью запрещается.

После стадий (операций) окончательной очистки первичной упаковки и оборудования при дальнейшем ведении технологического процесса они должны использоваться таким образом, чтобы не происходила их повторная контаминация.

Эффективность любых новых методик, замены оборудования и способов ведения технологического процесса должна быть подтверждена при валидации, которую необходимо регулярно повторять согласно разработанным графикам.

Требования к технологическому оборудованию

В создании условий, предотвращающих возможность микробного обсеменения инъекционного раствора, важную роль играет оборудование, реализующее технологические процессы. Это определяет ряд требований к конструкции, выбору форм, материалов и покрытий деталей технологического оборудования.

Производственное оборудование не должно отрицательно влиять на качество продукции. Части или поверхности оборудования, соприкасающиеся с продукцией, должны быть изготовлены из материалов, которые не вступают с ней в реакцию, не обладают абсорбционными свойствами и не выделяют какие-либо вещества в такой степени, чтобы это могло повлиять на качество продукции.

Одним из путей решения этих задач является применение современных автоматических линий ампулирования инъекционных препаратов. Такие поточно-автоматические линии имеют очевидные преимущества перед оборудованием, предназначенным для выполнения только одной какой-либо операции. Использование автоматических линий позволяет практически полностью исключить физический труд человека путем применения приборов, автоматов и машин, объединенных автоматическим средством транспортирования предметов труда иавтоматизации производственного процесса.

Передача исходного сырья и материалов внутрь и наружу производственных зон является одним из наиболее серьезных источников контаминации. Поэтому конструкции передаточных устройств могут варьировать от устройств с одинарной или двойной дверью до полностью герметизированных систем с зоной стерилизации их (стерилизующий туннель).

Изоляторы могут быть введены в работу только после соответствующей валидации. Валидация должна учитывать все критические факторы изолирующей технологии (например, качество воздуха внутри и снаружи изолятора, технологии передачи и целостность изолятора).

Устройство для технологии продувка-наполнение-герметизация – оборудование специальной конструкции, в котором в течение одного непрерывного технологического цикла из термопластичного гранулята формируются контейнеры, наполняются и затем герметизируются, все в пределах одного автоматического комплекса. Такое оборудование, используемое при асептическом производстве и имеющее зону типа А с эффективным потоком воздуха, может быть установлено в окружающей среде, по крайней мере типа С, причем должна быть применена оболочка, соответствующая зонам типов А/В.

Оборудование для технологии продувка-наполнение-герметизация, используемое в производстве продуктов, подлежащих стерилизации на завершающей стадии, должно устанавливаться в окружающей среде, по крайней мере, типа D.

Учитывая специфику этой технологии, должно уделяться особое внимание:

Конструкции и квалификации оборудования

Валидации и воспроизводимости процессов «очистка на месте» и «стерилизация на месте»

Окружающей среде, в которой установлено оборудование

Квалификации и обучению операторов

Чистоте технологической одежды операторов.

Требования к контролю качества

Каждое предприятие-производитель должно иметь независимую службу контроля качества и контрольную (испытательную) лабораторию, штат и оснащение которой позволяют проводить все требуемые испытания. Такая лаборатория должна быть отделена от производственных помещений и других лабораторий (биологической, микробиологической и т д.).

Во время технологического процесса производства инъекционных растворов обязательно проводят промежуточный (постадийный) контроль качества, т.е. после каждой технологической стадии (операции) проводится бракераж ампул, флаконов, гибких контейнеров и др., не отвечающих определенным требованиям. Так, после растворения (изотонизации, стабилизации и т.д.) лекарственного вещества, контролируется качественный и количественный состав, рН раствора, плотность и др.; после операции наполнения – проверяется выборочно объем наполнения сосудов и т.п.

Поступившее сырье, материалы, полупродукты, а также изготовленная промежуточная или готовая продукция сразу же после поступления или окончания технологического процессадо принятия решения о возможности их использования должны находиться в карантине. Готовая продукция не допускается к реализации до тех пор, пока ее качество не будет признано удовлетворительным.

Жидкие лекарственные средства для парентерального применения обычно контролируют по следующим показателям качества: описание, идентификация, прозрачность, цветность, рН, сопутствующие примеси, извлекаемый объем, стерильностьпирогены, аномальная токсичность, механические включения, количественное определение действующих веществ, антимикробных консервантов и органических растворителей.

Для жидких лекарственных средств для парентерального применения в виде вязких жидкостей дополнительно контролируют плотность.

Для жидких лекарственных средств для парентерального применения в виде суспензий дополнительно контролируют размер частиц, однородность содержания (в случае однодозовых суспензий), устойчивость суспензий.

В порошках для инъекций или внутривенных инфузий дополнительно контролируют: время растворения, потеря в массе при высушивании, однородность содержания или однородность массы.

Требования к исходным веществам

Все исходные и вспомогательные вещества должны быть разрешенными к медицинскому применению и удовлетворять требованиям НТД (фармакопейным статьям, техническим условиям, государственным и отраслевым стандартам).

Для некоторых веществ, используемых для приготовления инъекционных растворов, НТД предъявляет повышенные требования к чистоте – сорт «для инъекций». К ним относятся: магния сульфат, кальция хлорид, кофеин-бензоат натрия, эуфиллин, гексаметилентетрамин, натрия цитрат и натрия гидроцитрат, натрия гидрокарбонат. Для глюкозы и желатина в ГФвведено требование апирогенности, т.к. они являются хорошей питательной средой для микроорганизмов. Если лекарственные вещества не отвечают требованиям сорта «для инъекций», их подвергают специальной очистке от недопустимых химических и других примесей.

В случае отсутствия сорта «для инъекций» магния сульфата, не содержащего соединений марганца и железа, очистку от этих примесей проводят окисью магния при нагревании иотстаивании с последующей адсорбцией их на активированном угле.

Раствор кальция хлорида, используемый для приготовления инъекционного раствора, не должен содержать ионов железа и кальция сульфата. Освобождение от ионов железа проводится осаждением гидроокисью кальция и в виде гидроокиси железа адсорбируется на угле активированном. Кальция сульфат выпадает в осадок при нагревании раствора и длительном отстаивании. Затем раствор фильтруется и подвергается стабилизации 1 н раствором хлористоводородной кислоты до значения рН 6,5-7,0.

Раствор кальция глюконата перед ампулированием кипятят с обратным холодильником в течение 3 часов. Длительным кипячением препарат освобождают от примеси кальция оксалата, который иначе выпадает в осадок во время стерилизации.

Для получения стабильных растворов эуфиллина пользуются сортом «для инъекций» с повышенным содержанием этилендиамина (18-22% вместо 14-18%).

Сорт «для инъекций» гексаметилентатрамина не должен содержать аминов, солей аммония и параформа. Если нет данного сорта, то гексаметилентетрамин также подвергается специальной очистке.

Процесс разложения глюкозы в растворах ускоряет следы тяжелых металлов (железа и меди). С целью очистки раствора от тяжелых металлов и окрашенных продуктов разложения глюкозы, ее предварительно обрабатывают активированным углем и стабилизируют хлористоводородной кислотой до рН 3,0-4,0.

Раствор желатина медицинского 10% для инъекций очищают от механических примесей, добавляя на 1 л раствора взбитые белки трех яиц и 3% свежеобработанного угля активированного. Раствор нагревают до 105°С и выдерживают 15 минут, при этом свернувшиййся белок захватывает механические загрязнения.

В производстве инъекционных растворов используется активированный уголь марки А, предварительно обработанный раствором хлористоводородной кислоты.

Активированый уголь получают из древесины некоторых хвойных и лиственных пород деревьев, путем обжига и активации угля. Процесс получения угля проходит два этапа:

Исходный материал нагревают при температуре до 500°С без доступа воздуха, при этом происходит обугливание и возгонка летучих веществ.

Полученный уголь-сырец прокаливается в токе водяного пара или углекислого газа при температуре 850-960°С, при этом выгорают остатки смолистых веществ и освобождается внутренняя поверхность угля. Получается уголь, у которого все внутреннее строение представляет собой огромное количество трещин, пустых пор, канальцев и ходов. Такой уголь называют активным или активированным.

В зависимости от назначения активный осветляющий древесный порошкообразный уголь изготавливают четырех марок:

ОУ-А осветляющий уголь сухой щелочной. Предназначается для очистки сиропов в сахарорафинадной промышленности, воды и растворов в производствах органических кислот, масел и жиров, медицинских препаратов;

ОУ-Б осветляющий уголь влажный кислый. Предназначается для очистки медицинских препаратов; растворов в крахмало-паточных производствах и на гидролизных заводах;

ОУ-В осветляющий уголь сухой щелочной. Предназначается для очистки и осветления различных растворов в отраслях пищевой промышленности;

ОУ-Г осветляющий уголь сухой щелочной. Педназначается для очистки жидкостей от высокомолекулекулярных смолистых и окрашивающих примесей в органическом синтезе.

Обработка угля для очистки инъекционных растворов производится следующим образом. В фарфоровый сосуд вместимостью 100 л загружают 40 л нагретой до 90°С очищенной воды , к ней постепенно добавляют 1,2 кг химически чистой соляной кислоты и 9 кг активированного угля. Массы перемешивают в течении 30 минут, затем переносят в фарфоровый нутч-фильтр, где тщательно отжимают от воды. Отжатый уголь промывают на нутч-фильтр 9-10 раз горячей очищенной водой, затем промывают 3-4 раза (t°=20±5°C) очищенной водой. После каждой промывки уголь на фильтре тщательно отжимают. Промытый уголь проверяют на присутствие солей тяжелых металлов, хлоридов, сульфатов, солей кальция.

Обработанный уголь должен соответствовать следующим требованиям:

рН водной вытяжки должен быть в пределах 4,5-5,0

хлориды, сульфаты, соли кальция и тяжелых металлов должны отсутствовать;

содержание солей железа не более 0,003%;

Промытый уголь разрешается хранить в деревянной таре в течении одних суток. При более продолжительном хранении производится дополнительная промывка угля горячей водой с температурой 80-90°С.

Сведения о водопроводной воде

Производство инъекционных лекарственных форм является крупным потребителем водопроводной воды питьевого качества, обессоленной и очищенной (дистиллированной) воды.

Питьевая вода должна быть безопасна в эпидемическом отношении, безвредна по химическому составу и иметь благоприятные органолептические свойства. Безопасность воды в эпидемическом отношении определяют общим числом микроорганизмов и числом бактерий группы кишечных палочек.

Другим источником получения воды является природная вода, содержащая большее количество химических примесей, поэтому ее подвергают специальной очистке.

Основным требованием водоподготовки является использование исходной воды, которая не содержит или содержит минимальное количество примесей, способных при перегонке в аппаратах образовывать твердый слой – накипь. В образовании накипи участвуют различные вещества – основные гидрокарбонаты кальция и магния, которые при нагревании распадаются на свободную углекислоту и нерастворимые кальция и магния карбонаты.

Са(НСО3)2 → СО2 + Н2О + СаСО3 ↑

Мg(НСО3)2 → СO2 + Н2О + МgСО3

Воду, содержащую много солей кальция и магния называют жесткой, а воду с незначительным количеством их – мягкой. Полной жесткостью называют жесткость природной воды, не подвергавшейся нагреванию или какому-либо другому виду умягчения.  Под  общей жесткостью воды понимают суммарную концентрацию солей кальция и магния.

При нагревании гидрокарбонаты кальция и магния в воде разлагаются, и в осадок выпадают карбонаты кальция и магния. В результате жесткость воды уменьшается, поэтому иногда употребляется термин «устранимая» или «временная» жесткость воды.

Жесткость, оставшуюся после кипячения в воде в течение часа, называют постоянной.

В настоящее время жесткость воды выражается в милиграмм-эквивалентах (мг-экв) кальция и магния, содержащихся в 1 л воды. Воду классифицируют по жесткости:

очень мягкая – 0-1,5;

мягкая – 1,5-3;

средняя – 2-6;

очень жесткая – более 10 мг-экв/л.

Итак, в образовании накипи участвуют минеральные соли, механические примеси, растворенные органические вещества, кремнезем, силикаты, железа гидрокарбонат, глинозем и другие вещества, которые перед перегонкой необходимо обязательно удалить.

Таким образом, водоподготовкой называют улучшение качества воды, поступающей из водоисточника для производственного использования.

В зависимости от характера примесей и назначения воды, ее очистку ведут различными способами.

Удаление механических примесей. Механические примеси обычно отделяют отстаиванием с последующей декантацией или фильтрованием. С этой целью используют песочные фильтры.

Воду с высокой временной и постоянной жесткостью подвергают предварительному умягчению, которое может осуществляться двумя методами.

Метод осаждения. Этот метод заключается в переводе ионов кальция и магния в малорастворимые соединения путем прибавления к воде растворов рассчитанных количеств гидрата окиси кальция, едкого натрия, кристаллического натрия карбоната и др.

Са(НСО3)2 + Са(ОН)2 → 2СаСО3↓ + 2Н2О

МgSO4 + Cа(ОН)2 → Мg(ОН)2↓ + СаSО4

Са(НСО3)2 + Nа2СО3 → СаСО3↓ + NаНСО3

Мg(НСО3)2 + 2NаОН → МgСО3↓ + Nа2СО3 + 2Н2О

МgСО3 + NаОН → Мg(ОН)2↓ + Nа2СО3

После нескольких часов взаимодействия накипеобразователей с указанными реактивами образуются осадки, которые затем удаляются отстаиванием или фильтрованием.

Метод ионного обмена. Метод основан на обмене катионов кальция и магния на катионы натрия или водорода, содержащиеся в практически нерастворимом в воде метериале – катионите.

Вода, прошедшая через катионовые фильтры, будет содержать только натриевые соли или минеральные кислоты, которые хорошо растворимы и не способны образовывать накипи в аппаратах для перегонки. Данный метод имеет ряд преимуществ перед осаждением: более качественное устранение жесткости воды; простое устройство и обслуживание аппаратуры; низкая стоимость водоподготовки; возможность одновременного удаления органических веществ. К недостатку метода относится увеличение щелочности и количества некоторых солей в умягченной воде.

Коагуляция коллоидных примесей. Коллоидную муть можно удалить лишь после предварительного укрупнения взвешенных частиц. Для разрушения коллоидной системы необходимо нейтрализовать электрический заряд частиц. Лишенные заряда частицы под влиянием сил взаимного притяжения соединяются – коалесцируют. В качестве таких электролитов используют алюминия сульфат или квасцы алюмокалиевые. При наличии в воде аммиака, главным источником которого в природных водах являются белковые соединения, перед началом перегонки в исходную воду также добавляют квасцы (5 ч на 10 л воды). В результате  взаимодействия квасцов и аммиака образуется нелетучий аммония сульфат и выделяется хлористоводородная кислота. Для связывания последней перед началом перегонки прибавляют кристаллический двузамещенный натрия фосфат (3,5 ч на 10 л воды).

Токсикологические показатели качества воды характеризуют безвредность ее химического состава. Концентрация химических веществ, встречающихся в природных водах или добавляемых к воде в процессе ее обработки, не должна превышать существующих нормативов.

В производстве инъекционных лекарственных форм используется вода различной степени очистки:

вода обессоленная (деминерализованная);

вода очищенная (дистиллированная);

вода для инъекций.

 Получение деминерализованной воды

Деминерализованную (обессоленную) получают из водопроводной  воды питьевого качества, которая предварительно подвергается тщательному анализу, т.к. в ней содержится значительное количество растворенных и взвешенных веществ.

Деминерализация воды (освобождение от присутствия нежелательных катионов и анионов) проводится с помощью ионного обмена и методов разделения через мембрану.

Ионный обмен основан на использовании ионитов – сетчатых полимеров разной степени сшивки, с гелевой или микропористой структурой, ковалентно связанных с ионогенными группами. Диссоциация этих групп в воде или растворах дает ионную пару – фиксированный на полимере ион и подвижный противоион, который обменивается на ионы одноименного заряда (катионы или анионы) из раствора.

В фармацевтической промышленности используют сильно кислотные сульфокатиониты КУ-1, КУ-2 и пористый КУ-23. В H-форме (катионит с подвижным атомом водорода) они обменивают все катионы, содержащие в воде. Ионообмен на катионите можно представить в следующем виде:

formula 5.5

где K – полимерный каркас катионита.

Применяемые длительное время слабоосновные марки ЭДЭ-10П в настоящее время заменяются на сильноосновные АВ-171 и АВ-17, которые в ОН-форме (анионит с подвижной гидроксильной группой) обменивают все анионы, содержащиеся в воде. Реакция анионного обмена проходит по следующей схеме:

formula 5.6

где А – полимерный каркас анионита.

Ионообменная установка состоит из 3-5 пар катионитовых и анионитовых колонок (рис. 5.13).

Принцип работы ионообменной установки

Рис. 5.13. Принцип работы ионообменной установки

Среди методов разделения через мембрану можно выделить: обратный осмос, ультрафильтрацию, диализ, электродиализ, испарение через мембрану. Эти методы основаны на использовании перегородок, обладающих селективной проницаемостью, благодаря чему возможно получение воды без фазовых и химических превращений.

Обратный осмос (гиперфильтрация) – переход растворителя (воды) из раствора через полупроницаемую мембрану под действием внешнего давления. Избыточное рабочеедавление солевого раствора намного больше осмотического. Движущей силой обратного осмоса является разность давлений по обе стороны мембраны. Этот метод разделения впервые был предложен в 1953 году Ч.Е. Рейдом для обессоливания воды. Для разделения применяют мембраны двух типов:

Пористые – с размером пор 10–4–10–3 мкм (1–10 Å). Селективная проницаемость основана на адсорбции молекул воды поверхностью мембраны и ее порами. При этом образуется сорбционный слой толщиной несколько десятков Å. Адсорбированные молекулы перемещаются от одного центра адсорбции к другому, не пропуская соли. В нашей стране выпускаются ультрафильтрационные ацетатцеллюлозные мембраны – УАМ 50м, диаметр не менее, УАМ 100м – 75 Å, УАМ 150м – 125 Å, УАМ 200м – 175 Å, УАМ 300м – 250 Å и УАМ 500м – более 300 Å.

Непористые диффузионные мембраны образуют водородные связи с молекулами воды на поверхности контакта. Под действием избыточного давления эти связи разрываются, молекулы воды диффундируют в противоположную сторону мембраны, а на образовавшиеся места проникают следующие. Таким образом, вода как бы растворяется на поверхности и диффундирует внутрь слоя мембраны. Соли и почти все химические соединения, кроме газов, не могут проникнуть через такую мембрану. В нашей стране выпускаются гиперфильтрационные ацетатцеллюлозные мембраны МГА-80, МГА-90, МГА-95, МГА-100. Цифры в марке означают процент селективности – S, который рассчитывают по следующей формуле:

formula 5.7

где С1 и С2 – концентрации вещества в исходном растворе и фильтрате, мг/мл.

На этом принципе работают промышленные установки «Роса», УГ-1 и УГ-10.

Ультрафильтрация – процесс мембранного разделения растворов высокомолекулярных соединений под действием разности давлений. Данный метод используют, когда осмотическое давление несоизмеримо мало в сравнении с рабочим давлением. Движущей силой является разность давлений – рабочего и атмосферного.

Электродиализ. Механизм разделения основан на направленном движении ионов в сочетании с селективным действием мембран под влиянием постоянного тока. В качестве ионообменных мембран применяются:

катионитовые марки МК-40 с катионитом КУ-2 в Na-форме и основой на полиэтилене высокой плотности и МК-40л, армированная лавсаном;

анионитовые марки МА-40 с анионитом ЭДЭ-10П в Cl-форме на основе полиэтилена высокой плотности и МА-41л – мембрана с сильноосновным анионитом АВ-17, армированная лавсаном. Выпускаются электродиализные установки ЭДУ-100 и ЭДУ-1000 производительностью 100 и 1000 м3/сут.

Испарение через мембрану. Растворитель проходит через мембрану и в виде пара удаляется с ее поверхности в потоке инертного газа или под вакуумом. Для этой цели используют мембраны из целлофана, полиэтилена, ацетатцеллюлозы.

Преимуществом мембранных методов, все больше внедряемых в производство, является значительная экономия энергии. Расход ее при получении воды очищенной или аналогичной по чистоте деминерализованной составляет (кВт · час)/м3дистилляцией – 63,6; электролизом – 35,8; обратным осмосом – 3,7. Также сравнительно легко возможно регулировать качество воды. Недостатком  методов является опасность концентрационной поляризации мембран и пор, что может вызвать прохождение нежелательных ионов или молекул в фильтрат.

Деминерализованная вода используется для мойки стеклодрота, ампул, вспомогательных материалов и питания аквадистилляторов при получении воды очищенной (дистиллированной) и воды для инъекций.

Получение воды очищенной (дистиллированной). Требования, предъявляемые к ней

Вода очищенная ФС 42-2619-89 (Aqua purificata), используемая в производстве инъекционных лекарственных форм, должна быть максимально химически очищена  и отвечать соответствующей НТД. В каждой серии полученной воды обязательно проверяют значение рН (5,0-6,8), наличие восстанавливающих веществ, угольного ангидрида, нитратов, нитритов, хлоридов, сульфатов, кальция и тяжелых металлов. Допускается наличие аммиака – не более 0,00002%, сухого остатка – не более 0,001%. Для непрерывной оценки качества получаемой воды используется измерение удельной электропроводности. Однако метод недостаточно объективен, так как результат зависит от степени ионизации молекул воды и примесей.

Воду очищенную получают, в основном, получают методом дистилляции (перегонки) водопроводной или деминерализованной воды в дистилляционных аппаратах различных конструкций Основными узлами любого дистилляционного аппарата являются испаритель, конденсатор и сборник. Сущность метода перегонки заключается в том, что исходную воду заливают в испаритель и нагревают до кипения. Происходит фазовое превращение жидкости в пар, при этом водяные пары направляются в конденсатор, где конденсируются и в виде дистиллята поступают в приемник. Такой метод требует затрат большого количества энергии, поэтому в настоящее время на некоторых заводах получают воду очищенную методами разделения через мембрану.

Получение очищенной воды на фармацевтических предприятиях осуществляется с помощью дистилляционных аппаратов, высокопроизводительных колонных установок и различных конструкций  термокомпрессионных дистилляторов.

Растворители для стерильных и асептически приготовленных лекарственных средств

В качестве растворителей лекарственных веществ при получении инъекционных растворов применяются вода для инъекций, изотонические растворы  некоторых лекарственных веществ и неводные растворители природного, синтетического и полусинтетического происхождения, отвечающие требованиям НТД.

К растворителям предъявляются следующие требования: высокая растворяющая способность, необходимая химическая чистота, фармакологическая индифферентность, химическая совместимость с лекарственными веществами, т.е. отсутствие химического взаимодействия, устойчивость при хранении, доступность и дешевизна.

Вода является наиболее распространенным растворителем для парентеральных препаратов. Она представляет собой самый удобный с физиологической точки зрения растворитель, поскольку является в количественном отношении главной составной частью всех секретов организма и одновременно основным агентом, транспортирующим питательные вещества и продукты обмена веществ в организме.

Известно, что ряд препаратов из-за плохой растворимости в воде либо не могут применяться в медицинской практике, либо в значительной степени теряют свой терапевтический эффект. К ним можно отнести стероидные соединения, антисептики, фуранохромоны, алкалоидыгликозиды и др. С этой целью применяют неводные растворители: спирты, эфиры, масла и др. Неводные растворители, наряду с другими требованиями должны быть малотоксичными, прозрачными, иметь небольшую вязкость.

Получение воды для инъекций в промышленных условиях

Согласно требованиям ФС 42-2620-89 вода для инъекций (Aqwa pro ingectionibus) должна удовлетворять всем требованиям, предъявляемым к воде очищенной, а также должна бытьстерильной и апирогенной. Стерильность воды определяется методами, изложенными в статье «Испытания на стерильность» ГФ ХI издания, с. 187-192. Испытание пирогенности воды проводят биологическим методом, приведенным в статье «Испытание на пирогенность» ГФ ХI издания, с. 183-185.

Оборудование для получения воды очищенной и воды для инъекций

В промышленных условиях получение воды для инъекций и воды очищенной осуществляют с помощью высокопроизводительных корпусных аппаратов, термокомпрессионных дистилляторов различных конструкций и установок обратного осмоса.

Одним из представителей колонных многокамерных аппаратов являются многоступенчатые аппараты. Установки подобного типа для получения очищенной воды бывают различной конструкции. Производительность крупных моделей достигает 10 т/час.

Чаще всего применяются трехступенчатые колонные аппараты с тремя корпусами (испарителями), расположенными вертикально или горизонтально. Особенностью колонных аппаратов является то, что только первый испаритель нагревается паром, вторичный пар из первого корпуса поступает во второй в качестве греющего, где конденсируется и получаетсядистиллированная вода. Из второго корпуса вторичный пар поступает в третий – в качестве греющего, где также конденсируется. Таким образом, дистиллированную воду получают из ІІ и ІІІ корпусов. Производительность такой установки до 10 т/ч дистиллята. Качество получаемого дистиллята хорошее, так как в корпусах достаточная высота парового пространства и предусмотрено удаление капельной фазы из пара с помощью сепараторов.

Для обеспечения апирогенности получаемой воды необходимо создать условия, препятствующие попаданию пирогенных веществ в дистиллят. Эти вещества нелетучи и не перегоняются с водяным паром. Загрязнение ими дистиллята происходит путем переброса капелек воды или уноса их струей пара в холодильник. Поэтому конструктивным решением вопроса повышения качества дистиллята является применение дистилляционных аппаратов соответствующих конструкций, в которых исключена возможность переброса капельно-жидкой фазы через конденсатор в сборник. Это достигается устройством специальных ловушек и отражателей, высоким расположением паропроводов по отношению к поверхности парообразования. Целесообразно также регулировать обогрев испарителя, обеспечивая равномерное кипение и оптимальную скорость парообразования, т.к. чрезмерный нагрев ведет к бурному кипению и перебросу капельной фазы. Проведение водоподготовки путем обессоливания также уменьшает пенообразование и, следовательно, выделение капелек воды в паровую фазу.

На некоторых химико-фармацевтических предприятиях воду для инъекций получают с помощью дистиллятора "Mascarini" – производительность этого аппарата 1500 л/час. Он обеспечен прибором контроля чистоты воды, бактерицидными лампами, воздушными фильтрами, прибором для удаления пирогенных веществ, а также с помощью установки двойнойдистилляции воды производительностью 3000 л/час.

Трехкорпусной аквадистиллятор «Финн-аква» (Финляндия) функционирует за счет использования деминерализованной воды (рис. 5.14).

Аквадистиллятор «Финн-аква»

Рис. 5.14. Аквадистиллятор «Финн-аква» 1 – регулятор давления; 2 – конденсатор-холодильник;  3 – теплообменник камер предварительного нагрева; 4 – парозапорное устройство; 5 – зона испарения; 6, 7, 8 – труба; 9 – теплообменник

Вода поступает через регулятор давления в конденсатор, проходит теплообменники камер предварительного нагрева, а после нагревания поступает в зону испарения, состоящую из системы трубок, обогреваемых внутри греющим паром. Нагретая вода подается на наружную поверхность обогреваемых трубок в виде пленки, стекает по ним и нагревается до кипения.

В испарителе за счет поверхности кипящих пленок создается интенсивный поток пара, который движется снизу вверх со скоростью 20-60 м/с. Центробежная сила, возникающая при этом, обеспечивает стекание капель в нижнюю часть корпуса, прижимая их к стенкам.

Наиболее совершенными в настоящее время являются термокомпрессионные дистилляторы (рис. 5.15), конструкция которых разработана итальянской фирмой «Вопарасе». Их преимущество перед дистилляторами других типов заключается в том, что для получения 1 л воды для инъекций необходимо израсходовать 1,1 л холодной водопроводной воды. В других аппаратах это соотношение составляет 1/9-1/15. Принцип работы аппарата заключается в том, что образующийся в нем пар, перед тем как поступить в конденсатор, проходит через компрессор и сжимается. При охлаждении и конденсации он выделяет тепло, по величине соответствующей скрытой теплоте парообразования, которая затрачивается на нагревание охлаждающей воды в верхней части трубчатого конденсатора. Питание аппарата водой осуществляется в направлении снизу вверх, выход дистиллятора – сверху вниз. Производительность дистиллятора до 2,5 т/час. Качество получаемой апирогенной воды высокое, так как капельная фаза испаряется на стенках трубок испарителя.

Принцип работы работы термокомпрессионого дистиллятора

Рис. 5.15. Принцип работы работы термокомпрессионого дистиллятора 1 – конденсатор-холодильник; 2 – паровое пространство; 3 – компрессор; 4 – регулятор давления; 5 – камера предварительного нагрева; 6 – трубки испарителя.

Нагревание и кипение в трубках происходит равномерно, без перебросов, в тонком слое. Задерживанию капель из пара способствует также высота парового пространства. Недостатками являются сложность устройства и эксплуатации.

Наиболее широко распространенным до последних лет методом получения воды для инъекций была дистилляция. Такой метод требует затрат большого количества энергии, что является большим недостатком. Среди других недостатков следует отметить громоздкость оборудования и большую занимаемую им площадь; возможность присутствия в воде пирогенных веществ; сложность обслуживания.

Этих недостатков лишены методы мембранного разделения. Новые методы разделения через мембрану, все больше внедряемые в производство, протекают без фазовых превращений и требуют для своей реализации значительно меньших затрат энергии. Эти затраты сопоставимы с минимальной теоретически определяемой энергией разделения.

Мембранные методы очистки основаны на свойствах перегородки (мембраны), обладающей селективной проницаемостью, благодаря чему возможно разделение без химических и фазовых превращений.

Для получения воды для инъекций в практическом отношении представляют интерес следующие аппараты.

С использованием принципа мембранной очистки работает установка высокоочищенной воды «Шарья-500». Производительность ее по питающей воде 500 л/ч. получаемая после этой установки высокоочищенная вода свободная от механических примесей, органических и неорганических веществ. Она применяется в производстве иммунобиологических бактерийных препаратов и для приготовления инъекционных растворов.

Установка (УВВ) включает блоки предфильтрации, обратного осмоса и финишной очистки.

Блок фильтрации предназначен для очистки питьевой водопроводной воды от механических примесей размером 5 мкм и включает фильтр катионитный и два фильтра угольных, работающих параллельно или взаимозаменяемо.

Блок обратного осмоса работает при давлении не ниже 15 атм. Поступающая на блок вода разделяется после фильтрования на два потока: один из которых проходит сквозь обратноосмотические мембраны, а второй поток, проходящий вдоль поверхности мембраны, и содержащий повышенное количество солей (концентрат) отводится из установки. Для нормальной работы данного блока необходимо, чтобы соотношение объемов воды на подаче, сливе и проходящей через мембрану составляло 3:2:1 соответственно. Таким образом, для получения 1 литра высокоочищенной воды необходимо израсходовать приблизительно 3 литра воды водопроводной. При этом скорость слива достаточно высокая, что устраняет вредное влияние концентрированной поляризации на работу установки.

В блоке обратноосмотическом осуществляется очистка воды от растворимых солей, органических примесей, твердых взвесей и бактерий. Качество воды контролируется по удельному сопротивлению с помощью кондуктометра.

После блока обратного осмоса вода поступает на блок финишной очистки, включающей ионообмен и ультрафильтрацию. Ионообменная очистка воды осуществляется с помощью последовательно соединенных фильтров – катионного и анионного, за которыми установлен смешанный катионно-анионный фильтр, где происходит очистка от оставшихся катионов и анионов.

Окончательная доочистка воды проводится в двух ультрафильтрационных аппаратах с полыми волокнами АР-2,0, предназначенных для отделения органических микропримесей (коллоидных частиц и макромолекул).

Для производства иммунных и бактерийных препаратов не всегда пригодна вода для инъекций, полученная дистилляцией. Поэтому часто возникает необходимость в доочистке воды, которая может быть проведена с помощью установки «Супер-Кью». Производительность – 720 л/ч. вода пропускается через угольный фильтр, где происходит освобождение от органических веществ; затем – через смешанный слой ионотов; после чего поступает на патронный бактериальный фильтр с размером пор 0,22 нм (0,00022 мкм). Далее вода поступает на обратноосмотический модуль, где происходит удаление пирогенных веществ. Полученную воду используют для приготовления инъекционных лекарственных форм, а концентратиспользуют как техническую воду или повторно отправляют на очистку.

Мембранные методы получения высокоочищенной воды для инъекций широко используются в мировой практике и признаны экономически выгодными и перспективными.

Сведения о пирогенности

При парентеральном, особенно при внутрисосудистом введении препаратов, иногда наблюдается быстрое повышение температуры тела до 40°С. Это явление сопровождается учащением пульса, ознобом, потовыделением, тошнотой и головной болью. В особо тяжелых случаях эти явления приводят к смертельному исходу. Они связаны с присутствием в растворе пирогенов – веществ бактериального происхождения. Пирогенностью обладают живые микроорганизмы, продукты жизнедеятельности микроорганизмов, тела мертвых бактерий и продукты их жизнедеятельности, которые могут находиться в растворах после стерилизацииПирогенные вещества принято разделять на экзогенные ( в основном бактериальные) и эндогенные (клеточно-тканевые). Источником эндогенных пирогенов могут быть лейкоциты и белки крови, которые в определенных условиях образуют и выделяют биологически активные вещества с пирогенными свойствами (лейкопирогены).

С химической точки зрения пирогены – это сложные  вещества с высокой молекулярной массой и размером частиц от 50 до 1 мкм, состоящие, в основном, из липополисахаридов,адсорбированных на белковом носителе. Например, химический состав пирогенного вещества, выделенного из Proteus Vulgaris, состоит из углерода (25,83%), водорода (6,06%), азота (6%), фосфора (0,29%) и золы (8,33%).

Пирогены  растворимы в воде, нерастворимы в спирте и ацетоне, устойчивы к воздействию повышенной температуры. Нагревание в автоклаве при 120°С в течение 20 минут приводит к гибели бактерий, но не уничтожает пирогены. Чувствительность пирогенов к высокой температуре различна. Изменение рН водного раствора практически не влияет натермолабильность пирогенов. В сухом состоянии их полное разложение происходит только при температуре 200°С в течение 30 мин; стерилизация сухим воздухом при 160°С в течение 2 ч не гарантирует полной апирогенности. Повышение температуры позволяет сократить время, необходимое для уничтожения пирогенов. При температуре 600°С достаточно минутного нагревания, при 450°С – двухминутного, следовательно, освободить от них воду и инъекционные растворы термической стерилизацией практически невозможно.

Пирогенные вещества чувствительны к действию окислителей, например, перекиси водорода или перманганата калия.

Пирогены обладают очень малыми размерами и проходят через самые плотные фильтры с размерами пор от 0,005 до 0,001 мкм.

Существуют различные методы обнаружения и удаления пирогенов из растворов.

Методы обнаружения пирогенов

Для практических целей, наряду с методами удаления пирогенных компонентов, большое значение имеют методы их обнаружения: а) химические, б) физические, в) биологические.

Химические методы основаны на проведении определенных цветных реакций.

Физические методы основаны на измерении электропроводности и полярографических максимумов.

Из-за ряда недостатков первых двух методов чаще всего применяют методы биопроб, которые введены в Фармакопеи различных стран мира.

Биологические методы. До настоящего времени основным и официально принятым во всех странах методом испытания лекарственных средств на наличие пирогенных примесейявляется метод, основанный на троекратном измерении температуры тела кролика после внутривенного введения исследуемого препарата. Повышение температуры на 0,6°С или более, согласно требованию фармакопей, считается доказательством наличия пирогенов.

Специальные статьи Фармакопей оговаривают условия проведения этого испытания, поскольку факторы – химический (корм), физический (изменение температуры окружающей среды), физиологический (возбуждение животных при анальном измерении температуры) – могут повлиять на результат испытания. И даже при самом строгом соблюдении требований к проведению испытаний невозможно избежать случайных ошибок, связанных с индивидуальной чувствительностью животных к пирогену и препарату, различными климатическими условиями, времени постановки опыта и т.п. Все это может отразиться на показателях температуры, измеряемой с точностью до ±0,1°С.

Согласно данным различных Фармакопей, доза одного и того же препарата в ряде случаев колеблется в широких пределах. Очень часто при равных или весьма близких дозах препаратов объемы вводимых растворов различаются в 5 раз. Отмечено, что наблюдается большой разрыв между дозами для кроликов и человека. Нередко эти дозы различаются в 100-6000 раз. По мнению ученых, изучавших этот вопрос, тест-доза препарата при испытании пирогенности должна подбираться индивидуально, учитывая его фармакологию, переносимость кроликом, и ориентировочно должна составлять 1/10 максимальной суточной дозы для человека.

Существует вариант условий признания препарата пирогенным либо апирогенным: воду или раствор лекарственного средства считают апирогенным, если сумма максимальных повышений температур у 3 кроликов не превышает 1,2°С, и пирогенным, если она равна или больше 2,2°С. Если сумма повышений температуры у 3 кроликов больше 1,2°С, но меньше 2,2°С, то испытание повторяют на 5 кроликах. Воду или раствор лекарственного средства считают пирогенным, если сумма повышений температуры у 8 кроликов равна или больше 3,8°С, в противном случае – апирогенным.

В последнее время заметное распространение получает метод испытания лекарственных средств на пирогенность in vitro с использованием лизата амебоцитов краба Лимулюс. Этот метод имеет ряд преимуществ перед фармакопейным: он чувствительнее в 5-10 раз, результат получается быстрее, возможно количественное определение пирогена. Кроме того, с его помощью возможен контроль препаратов, которые нельзя испытать на кроликах. Одним из недостатков этого метода является его специфичность в отношении эндотоксина граммотрицательных бактерий, т.е. опасность не уловить наличие в лекарственных средствах пирогенов другого происхождения.

Методы удаления пирогенных веществ

Методы депирогенизации подразделяются на:

химические;

физические;

энзиматические.

Химические методы удаления пирогенов.  Растворы, содержащие пирогены, нагревают при 100°С в течение 2 часов с добавкой 0,1 моля перекиси водорода. Эффективен способ нагрева растворов при температуре 116°С в течение 20 мин с добавкой 0,04 моля перекиси водорода.

Ряд методов основан на применении раствора перманганата калия. Рекомендуется прибавлять к раствору небольшое количество гипохлорита (щавелевой воды): на 1 л добавляют 0,25 мл раствора гипохлорида натрия с содержанием активного хлора около 0,5%, смесь выдерживают 30 мин. Избыток гипохлорида удаляют с помощью активированного угля, которого берут из расчета 15% от объема воды. Для удаления пирогенов предлагается также обрабатывать растворы п-хиноном и антрахиноном, которые образуют с пирогенами комплексные соединения.

Для уничтожения пирогенных веществ можно использовать подогрев раствора с 0,1 н раствором едкого натра или 0,1 н раствором соляной кислоты (при рН 4,0) в течение 1 ч. При этом происходит гидролитическое расщепление пирогенов с образованием моносахаридов, не обладающих пирогенными свойствами. Расход кислоты и щелочи при этом очень велик, в связи с чем этот метод неэкономичен.

Из-за возможного взаимодействия компонентов, химический и энзиматический методы мало приемлемы при промышленном изготовлении растворов для инъекций.

Физико-химические методы. Физико-химические методы основываются на явлении адсорбции пирогенов активированным углем, каолином, асбестом, целлюлозой и т.п. Количествопирогенных веществ уменьшается после обработки активированным углем путем встряхивания в течение 15 мин, при этом эффективность очистки зависит от природы пирогенных веществ. Гранулированный уголь менее эффективен. Уголь, применяемый для очистки растворов, должен быть весьма тщательно очищен, хорошо промыт водой, не содержать пирогенови высушен при температуре 250°С в течение 2 ч. Однако, обработка растворов активированным углем не всегда приводит к полной депирогенизации. Кроме того, этот метод нельзя применять для очистки растворов лекарственных веществ, легко адсорбируемых углем, например, солей алкалоидов или легко окисляемых,  например, аскорбиновой кислоты.

Ряд авторов рекомендует для очистки от пирогенов использовать ионообменные смолы (например, для аминокислот), считая, что они более эффективны, чем активированный уголь. Депирогенизацию воды можно осуществить путем фильтрования через бактериальный фильтр Зейтца. Размер пор многих бактериальных фильтров такой же, как у фильтра Зейтца, но они не пригодны для удаления пирогенных веществ, поэтому нельзя объяснить эффективность удаления пирогенных веществ только малым диаметром пор. Рекомендуется, чтобы диаметр пор фильтра Зейтца не превышал 2,4 мкм. Фильтр Зейтца задерживает пирогенные вещества из раствора на 99,5%, даже когда они находятся в значительном количестве. Чем меньше концентрация пирогенных веществ в растворе, тем лучше они задерживаются на фильтре.

Обработка раствора активированным углем с последующим фильтрованием через фильтр Зейтца обеспечивает более полное удаление пирогенных веществ.

Для удаления пирогенных веществ из растворов аминокислот, применяемых для внутривенного вливания, предлагается их автоклавирование при температуре 120°С в течение 2-3 часов в атмосфере азота.

Уменьшение пирогенных веществ происходит при термической стерилизации в течение 20 мин при 120°С, а при 140°С в течение 20 мин наступает их инактивация. Полное уничтожение пирогенных веществ достигается стерилизацией в сушильном шкафу при температуре 200°С в течение 45 мин. или при 250°С в течение 30 мин. При температуре 120°С пирогенность уменьшается в процессе автоклавирования на следующие величины: в течение 30 мин на 25%, в течение 1 ч на 70%, в течение 2 ч на 95%, в течение 4 ч на 100%.

К физико-химическим методам удаления пирогенов из растворов следует отнести уничтожение их с помощью ультразвука с частотой 2 МГц и интенсивностью 2 вт/см2 в течение 10 мин. При этом достигается полное разрушение пирогенных веществ. В то же время ультразвук в 800 МГц и интенсивностью 1,5 вт/см2 в течение 5-10 мин незначительно снижаетпирогенность воды. При действии ультразвука рН воды изменяется на ±0,75.

Государственным научным центром лекарственных средств совместно с отделом биохимических методов очистки воды АН Украины (Ф.А.Конев, Т.П.Скубко, П.И.Гвоздяк) предложен оригинальный фильтр для получения апирогенной воды. Действие фильтра основано на удерживании микроорганизмов диэлектрическими материалами в электрическом поле, силовые линии которого направлены перпендикулярно к движению потока стерилизуемой жидкости.

Срок использования воды для инъекций регламентируется 24 часами с момента получения, при условии ее хранения в асептических условиях. При более длительном хранении вода поглощает из воздуха углерода диоксид и кислород, может взаимодействовать с материалом используемой емкости, вызывая переход ионов тяжелых металлов, и является средой для размножения микроорганизмов. Поэтому наиболее предпочтительным является использование свежеприготовленной воды, которую иногда непосредственно после дистилляции кипятят в течение 30 минут.

Более надежное хранение гарантируется специальными системами, выполненными из инертного материала, в которых вода находится при высокой температуре и в постоянном движении.

Неводные растворители

Для приготовления инъекционных лекарственных форм, кроме воды для инъекций, используют также неводные растворители. Применение этих растворителей позволяет получить растворы из нерастворимых или труднорастворимых в воде веществ, устранить гидролиз, получить растворы лекарственных веществ пролонгированного действия. Неводные растворителиобладают различной растворяющей способностью, антигидролизными, стабилизирующими и бактерицидными свойствами. Однако далеко не все неводные растворители могут быть использованы для получения стерильных растворов вследствии фармакологической активности, токсичности, иногда гемолитического действия. В связи с этим к неводнымрастворителям предъявляются следующие требования: они не должны обладать острой и хронической токсичностью, вызывать местное раздражающее действие; должны обладать высокой растворяющей способностью с лекарственными веществами; должны быть химически и биологически совместимы; быть устойчивыми при стерилизации; иметь низкую вязкость. Кроме того, температура кипения должна быть не более 100°С , температура замерзания – не выше +5°С.

По химической природе неводные растворители делятся на несколько групп: жирные масла, одноатомные и многоатомные спирты, простые и сложные эфиры, амиды, сульфоны и сульфоксиды.

Для приготовления инъекционных растворов применяются неводные растворители, как индивидуальные так и смешанные: водно-глицериновые, водно-пропиленовые, спирто-водно- глицериновые и др.

Весьма широко применяются смеси жирных масел  с бензилбензоатом, этилолеатом. Смешанные растворители обладают большей растворяющей способностью, чем каждыйрастворитель в отдельности. Такое явление называется сорастворением, а растворители – сорастворителями. В настоящее время сорастворители широко используются для полученияинъекционных растворов труднорастворимых веществ.

Неводные растворители применяются для приготовления инъекционных лекарственных форм, содержащих гормоны, витамины, антибиотики, камфору, барбитураты, серу, соли ртути и др.

Масла растительные.Масла растительные являются неводными растворителями, применяемыми для приготовления инъекционных препаратов, и после воды являются самыми распространенными растворителями.

Растительные масла представляют собой эфиры ненасыщенных жирных кислот, смеси фосфатидов, свободных жирных кислот и др. веществ. Жирное масло содержит липазы, которые в присутствии малейшего количества воды вызывают омыление масла с образованием свободных жирных кислот, поэтому масла должны быть полностью обезвожены. Образующиеся продукты могут взаимодействовать со многими лекарственными и вспомогательными веществами, изменяя их свойства, кроме того кислые масла раздражают нервные окончания и могут вызвать болевые ощущения.

Это прозрачные слабо окрашенные маслянистые жидкости, маловязкие, без запаха или со слабым запахом, нерастворимые в воде, малорастворимые в спирте, легкорастворимые  в эфире, хлороформе, петролейном эфире. В соответствии с требованиями ГФ ХI  масла для стерильных растворов должны быть получены методом холодного прессования из свежих семян.

При анализе жирных масел определяют их цвет, вкус, запах, растворимость и числовые показатели. Жирные масла не должны содержать белка и минеральных примесей, иметь кислотное число не более 2,5; содержание мыла в них должно составлять не более 0,001% и т.д.

К недостаткам масляных растворов следует отнести их относительно высокую вязкость, болезненность инъекций, плохое рассасывание и возможность образования гранулем в месте введения. Для уменьшения вязкости в некоторых случаях добавляют этиловый или этилгликолевый эфир. Растворимость некоторых веществ в маслах увеличивают путем добавления сорастворителей или солюбилизаторов (бензилового спирта, бензилбензоата), которые одновременно повышают и стабильность масляных растворов.

В основном жирные масла применяют для внутримышечных инъекций и довольно редко – для подкожных.

Наиболее широко используется масло персиковое, миндальное, оливковое, подсолнечное, соевое и другие, которые должны быть рафинированными и дезодорированы. Персиковое масло применяется для приготовления инъекционных растворов витаминов (эргокальциферола, ретинола ацетата), гормонов (прогестерона, синэстрола, тестостерона пропионата т др.), камфоры, кризанола, а также взвесей (бийохинола).

Менее распространенным является масло оливковое, которое применяется для изготовления 20% раствора камфоры и 2% раствора синэстрола.

Все масла, предназначенные для приготовления инъекционных растворов необходимо подвергать предварительной стерилизации при температуре 120°С в течение 2 ч.

Спирты одно- и многоатомные. Одноатомные и многоатомные спирты применяются в качестве неводных растворителей во многих странах мира. Они смешиваются с водой, менеевязки, чем масла, и обладают способностью растворять многие лекарственные субстанции.

Из одноатомных спиртов наибольшее распространение получил этиловый спирт, из многоатомных пропиленгликоль, глицерин и полиэтиленгликоль.

Этиловый спирт при подкожном введении вызывает боль, а затем анестезию; кроме того он обладает собственным фармакологическим действием, поэтому и не может применяться в неразбавленном состоянии. Ввиду хорошей растворимости в нем различных органических веществ этиловый спирт часто применяется в качестве компонента многих растворов дляинъекций. В качестве сорастворителя в смеси с водой он применяется для получения инъекционных растворов гидрокортизона, ряда сердечных препаратов: дигитоксина (50% спирта), мефеназина (25% спирта), дигоксина (10% спирта), и др.

Этиловый спирт используется как сорастворитель и консервант в концентрации от 2 до 30 % при изготовлении растворов сердечных гликозидов: конваллятоксина, целанида, эризимина, и строфантина К. Этиловый спирт включен в состав смешанных растворителей (используемых для приготовления инъекционных растворов) в Международную фармакопею 2-го издания и фармакопеи ряда зарубежных стран.

Этиловый спирт может применятся в качестве так называемого промежуточного растворителя. Этот технологический прием используется для приготовления растворов некоторых противоопухолевых препаратов, нерастворимых ни в воде, ни в маслах. С этой целью препараты растворяют в минимальном количестве этилового спирта, смешивают с оливковым маслом (получается эмульсия), затем спирт отгоняется под вакуумом и получается масляный раствор.

При изготовлении некоторых растворов для инъекций используется бензиловый спирт в концентрации 1-10% в качестве сорастворителя. С этой же целью в технологии инъекционныхрастворов используется и пропиленгликоль (в смеси с водой и добавкой этилового или бензилового спирта) Он является хорошим растворителем для сульфаниламидов, барбитуратов, антибиотиков и других лекарственных веществ. Его используют при получении микрокристаллической суспензии гидрокортизона ацетата 2,5%.

Как солюбилизатор и стабилизатор рекомендован спирт поливиниловый для получения некоторых водных суспензий.

Пропиленгликоль (пропандиол-1,2) представляет собой прозрачную, бесцветную вязкую жидкость, поглощающую влагу из воздуха.

Пропиленгликоль является хорошим растворителем для сульфамидов, барбитуратов, витаминов А и D, антибиотиков, анестезина, алкалоидов в форме оснований и многих других лекарственных веществ.

Пропиленгликоль как растворитель самостоятельно применяется ограниченно, например, в препаратах хинидина. Чаще всего используют в вице 40-70% водных растворов, а также в смеси с другими сорастворитедями (этиловым спиртом, этаноламином, полиэтиленгликолями).

Растворы, содержащие до 50% пропиленгликоля, используются для внутривенных, свыше 50% для внутримышечных инъекций.

Пропиленгликоль способствует пролонгированию действия ряда лекарственных препаратов.

Глицерин – прозрачная вязкая жидкость с высокой температурой кипения, смешивается с водой и спиртом. Он обладает высокой гигроскопичностью и может поглощать до 40% воды.

Глицерин в концентрации до 30% используется в качестве сорастворителя в смесях с водой или этиловым спиртом.

В инъекционных препаратах отечественного производства глицерин в концентрации до 10% применяется как сорастворитель в растворах целанида, випраксина, мезатона, фетанола, дибазола.

Для получения растворов легко гидролизующихся  лекарственных веществ предложен сорбит и маннит в концентрации 60% в воде.

Полиэтиленгликоли (ПЭГ), получаемые путем поликонденсации окиси этилена и этиленгликоля, соответствуют общей формуле:

Н—(—ОСН2—СН2—)nОН,

где «n» может изменяться от 2 до 85 и выше. ПЭГ различаются по средней молекулярной массе. ПЭГ 200, 300, 400, 600 вязкие, бесцветные, прозрачные, умеренно гигроскопичныежидкости со слабым характерным запахом. Они нейтральны, физиологически индифферентны, растворимы в воде и спирте, устойчивы при хранении и не подвергаются гидролизу.

В качестве растворителей для парентеральных препаратов применяются низкомолекулярные поликонденсаты, находящиеся при нормальных условиях в жидком состоянии. Чаще всего используется полиэтиленоксид (ПЭО 400), как прекрасный растворитель сульфаниламидов, анестезина, камфоры, бензойной и салициловой кислот, фенобарбитала. Предложен также способ приготовления растворов антибиотиков в стерильном растворе ПЭО 400. ПЭО используется для получения растворов для инъекций производных сарколизина, обладающих выраженной противоопухолевой активностью.

ПЭГ обладает способностью растворять многие лекарственные вещества. В концентрации до 70% применяются для внутримышечных и внутривенных инъекций. Внутримышечное введение их легко переносится и растворители выводятся из организма больного в течение 24 ч, причем 77% удаляется в течение 12 ч.

ПЭГ 200 предложено использовать для приготовления растворов ванкомицина, фенобарбитала, аскорбината натрия.

ПЭГ 400 используется в препаратах дигоксин, биомицин, левомицетин, пенициллин и др.

Простые и сложные эфиры. Эфиры являются менее вязкими, чем масла, и обладают хорошей растворяющей способностью, все чаще используются при приготовленииинъекционных растворов. К ним относятся этиловые эфиры олеиновой, линолевой, линоленовой, кислот, октиловый эфир левуленовой кислоты и др.

Бензилбензоат. Бензилбензоат (бензиловый эфир бензойной кислоты) представляет собой бесцветную маслянистую жидкость, практически нерастворим в воде, смешивается с этиловым спиртом. Значительно увеличивает растворимость в маслах труднорастворимых веществ из класса стероидных гормонов. Кроме того, бензилбензоат предотвращает кристаллизацию веществ из масел в процессе хранения . Смеси бензилбензоата с персиковым маслом (10-50%) не оказывают токсического действия. В ГФ Х включены следующие масляные растворы гормональных препаратов с добавлением 20-30% бензилбензоата: растворы прогестерона, оксипрогестерона, капроната и тестостерона пропионата.

Гликофурол – полиэтиленгликолевый эфир тетрагидрофурфурилового спирта. Представляет собой бесцветную жидкость, растворимую в метаноле, этаноле и глицерине; смешивается с водой в любом соотношении.

Используют гликофурол в растворе ацетилхолина и роникола.

Изопропилмиристат как растворитель состоит из изопропилмиристата и изопропиловых эфиров других насыщенных кислот. Он используется в качестве индифферентной основы при введении эстрогенов.

Этилолеат – синтетический сложный эфир. Представляет собой продукт этерификации олеиновой кислоты этиловым спиртом. Светло-желтая маслянистая жидкость, нерастворимая в воде; смешивается со спиртом, эфиром, маслами.

Применение этилолеата вместо масел дает возможность исключить ряд технологических операций в процессе приготовления растворов: предварительное обезвоживание масел и ихстерилизацию, а также упростить операции фильтрации и ампулирования. Он имеет ряд преимуществ по сравнению с маслами: смешивается со спиртом, эфиром, не вызывает побочных явлений, обладает постоянным химическим составом и меньшей вязкостью (так, вязкость оливкового масла при температуре 200°С равна 80,3 сП, вязкость этилолеата при той же температуре составляет всего 6,2 сП), а также большей стабильностью при тепловой стерилизации (1500°С в течение 1 часа). Благодаря меньшей по сравнению с растительными маслами вязкости, этилолеат быстрее адсорбируется тканями, является более удобным растворителем.

Этилолеат хорошо растворяет салициловую кислоту, анестезин, пенициллин, ряд других антибиотиков, холестерин, витамины, стероидные гормоны, камфору и др. Установлено, что при внутримышечном введении препарата на этилолеате в отличие от растительных масел наблюдается его быстрое и полное рассасывание.

Однако, наличие двойной связи в химическом строении этилолеата способствует его быстрому окислению. Для предотвращения этого процесса предложено добавлять к нему антиоксиданты ( α-токоферол, бутилокситолуол и др.) и проводить стерилизацию в атмосфере инертного газа.

Как растворитель для инъекций этилолеат включен в Международную фармакопею 2-го издания, по которой разрешается использовать этилолеат вместо растительного масла. Этилолеат применяется также как добавка к масляным растворам для увеличения растворимости и понижения их вязкости.

Диоксаны и диоксоланы представляют собой продукты взаимодействия глицерина с карбонильными соединениями в присутствии де-гидратирующето агента. Наименее токсичныйпредставитель этой группы 2,2-диметил-4-метанол-1,3-диоксолан. Это соединение известно под названием солькеталь, глицерол-диметилкеталь и др.

Солькеталь – бесцветная жидкость, стабильная при хранении, устойчивая к действию щелочей, смешивается с водой, спиртом и другими органическими растворителями. В присутствии растворов сильных кислот гидролизуется с образованием ацетона и глицерина.

Соединение относительно безвредно, не раздражает оболочки и ткани. Солькеталъ используется при производстве парентеральных растворов тетрациклина.

Глицероформаль является продуктом конденсации глицерина с формальдегидом и представляет собой смесь 25% З-окси-метил-1,3-диоксолана и 75% 5-оксидиоксолана. Глицероформалъ – бесцветное вещество с невысокой вязкостью, неограниченно смешивается с водой, малотоксичен.

Амиды. Растворители, относящиеся к группе амидов, в препаратах для инъекций применяются в концентрации от 5 до 50%, часто в сочетании с пропиленгликолем, этаноламином.

N,N-диметилацетамид представляет собой прозрачную нейтральную жидкость с температурой кипения 165,5ºС и плотностью 0,493. Для приготовления инъекционных растворов левомицетина, окситетрациклина, тетрациклина используют 50% водный раствор диметилацетамида. Он обладает противовоспалительным действием.

N-β-оксиэтиллактамид карбоксамид молочной кислоты представляет собой бесцветную прозрачную сиропообразную жидкость, смешивающуюся с водой. Применяется в виде 50% водных растворов, обладает стабильностью, не раздражает ткани. Применяется в инъекционных растворах тетрациклина, причем действие препарата пролонгируется на сутки.

Сульфоксиды и сульфоны. Высокую растворяющую способность имеют диметилсульфоксид и сульфолан. Они обладают незначительной токсичностью, смешиваются со многимирастворителями. Предложены для приготовления многих инъекционных препаратов.

Среди растворителей класса сульфоксидов и сульфонов наибольший интерес представляют диметилсульфоксид и сульфолан.

Диметилсульфоксид очень гигроскопичная жидкость; при 20ºС поглощает около 70% воды, малотоксичен.

Сульфолан – тетрагидротиофен-1,1-диоксид, тетраметиленсульфон, высококипящий органический растворитель с большой диэлектрической проницаемостью.

Приготовление растворов для инъекций

Технология инъекционных препаратов представляет собой сложное многостадийное производство, включающее как основные, так и вспомогательные процессы.

Изготовление растворов для инъекций проводят в специальных помещениях первого или второго класса чистоты с соблюдением всех правил асептики. Приготовление водных или невязких растворов для инъекций проводят массообъемным методом, с использованием герметически закрываемых реакторов, снабженных рубашкой и перемешивающим устройством. В тех случаях, когда плотность растворителя значительно отличается от плотности воды, используют весовой метод, при котором и лекарственное вещество и растворитель берут по массе. Растворение медленно- или трудно растворяющихся лекарственных веществ ведут при нагревании и перемешивании.

Стадия приготовления раствора включает следующие операции: растворение, изотонирование, стабилизация, введение консервантовфильтрование.

В зависимости от свойств лекарственных веществ некоторые из операций могут быть исключены, например, изотонирование, стабилизация, введение консервантов.

Изотонирование инъекционных растворов

Среди инъекционных растворов особую группу составляют изотонические, под которыми понимают растворы с осмотическим давлением, равным осмотическому давлению жидкостей организма (плазмы крови, лимфы, спинномозговой жидкости и т.д.). Осмотическое давление растворов является следствием теплового движения молекул растворенного вещества, стремящегося занять возможно больший объем. Оно в организме поддерживаются на постоянном уровне действием саморегуляторов. Осмотическое давление плазмы крови в норме держатся на уровне 72,52 × 104 Н/м2 (Па) или 7,4 атм. Растворы с меньшим осмотическим давление называются гипотоническими, с большим – гипертоническими.

При введении большого количества растворов в виде внутрисосудистых инъекций осмотическое давление жидкостей организма нарушается. Объясняется это тем, что клеточные оболочки, обладая свойством полупроницаемости, пропускают воду и препятствуют проникновению многих растворенных в ней веществ. В связи с этим, если клетка снаружи окружена раствором с иным осмотическим давлением, чем давление внутри клетки, то происходит движение воды в клетку или из клетки до выравнивания концентрации, т.е. наблюдается явление осмоса.

При введении в кровь гипертонического раствора (Рр-ра > Рвнутри клетки) – вода выходит из клетки. Она обезвоживается и наступает явление плазмолиза, при котором эритроциты сморщиваются.

При введении гипотонического раствора (Рр-ра < Рвнутри клетки) жидкость переходит вовнутрь клетки до момента выравнивания концентрации. Клетка разбухает, клеточная оболочка при этом может лопнуть, а клетка погибнуть. Это явление носит название лизис, а для эритроцитов – гемолиз.

Кроме того, внутримышечное и подкожное введение неизотонированных растворов вызывает боль, причем она тем сильнее, чем резче осмотическая разница. Поэтому при внутрисосудистом применении некоторых инъекционных растворов необходимо их изотонирование.

Изотонические концентрации лекарственных веществ в растворах можно рассчитать следующими методами:

метод, основанный на законе Вант-Гоффа;

криоскопический метод, основанный на законе Рауля;

метод эквивалентов лекарственных веществ по натрию хлориду.

За рубежом пользуются также графическим методом расчета изотонических концентраций, позволяющим по разработанным номограммам быстро, но с некоторой приближенностью определить количество натрия хлорида, необходимое для изотонирования раствора лекарственного вещества.

Метод, основанный на законе Вант-Гоффа. Известно, что 1 моль любого недиссоциирующего вещества занимает в водном растворе при 0°С и давлении 10,13×104 Н/м2 (760 мм.рт.ст.) 22,4 л. То есть раствор, содержащий в объеме 22,4 л, 1 моль растворенного недисоциирующего вещества при О°С имеет осмотическое давление 9,8×104 Н/м2.

Для того, чтобы в таком растворе осмотическое давление поднять до давления кровяной плазмы (7,4 атм), необходимо вместо 1 моля недиссоциирующего вещества растворить 7,4 моля или 1 моль этого вещества растворить в соответственно меньшем количестве воды: 22.4 / 7.4 = 3.03 л. В полученный результат необходимо внести поправку, т.к. он верен только для 0°С (или 273° по школе абсолютной температуры), а температура тела составляет 37°С (или 310°К). Поэтому 1 моль вещества следует растворять не в 3.03 л, а в несколько большем количестве воды (310·3.03)/273 = 3.44 л.

Количество молей вещества при этих условиях будет составлять в 1 л раствора 1 : 3.44 = 0.29. Иначе говоря, чтобы приготовить 1 л изотонического раствора, необходимо взять 0.29 моля лекарственного вещества (неэлектролита) и, растворив в воде, довести объем раствора до 1 л:

m = 0.29 M или 0.29 = m / M,

где m – количество вещества, необходимое для приготовления 1 л изотонического раствора, г;

0.29 – фактор изотонии вещества-неэлектролита;

М – молекулярная масса данного лекарственного вещества.

Пользуясь этой формулой, можно рассчитать изотонические концентрации растворов. Например:

глюкозы (С6Н12О6) 0.29·180 = 52.2 г/л или 5.22%;

гексаметилентетрамин (СН2)6N4 0.29·140 = 40.6 г/л или 4.06%

Фактор изотонии проще выводится из уравнения Клапейрона-Менделеева:

pV = n R T,

где p – осмотическое давление кровяной плазмы, атм;

V – объем раствора, л;

n – число молей растворенного вещества;

R – газовая постоянная, выраженная для данного случая в атмосферо-литрах, равная 0.082;

Т – абсолютная температура, град.

Отсюда:

n = pV/RT = (7,4 · 1)/(0,082 · 310) = 0,29.

Приведенные расчеты верны, если их проводят для неэлектролитов, т.е. вещества, не распадающиеся при растворении на ионы.

В случае электролитов нужно учитывать, что они диссоциируют в водных растворах, и их осмотическое давление будет тем больше, чем выше степень диссоциации. Например, вещество в растворе диссоциировано на 100%

NaCl = Na+ + Cl .

В данном случае число элементарных частиц, оказывающих давление, увеличивается вдвое. Если раствор хлорида натрия содержит в 1 л 0.29 моля NaCl, то он имеет осмотическоедавление не 7.4 атм., а в 2 раза больше, 14 атм. Следовательно, фактор изотоничности 0.29 к электролитам не применим. Он должен быть уменьшен от степени диссоциации. Для этого в уравнение Клапейрона-Мендеелеева вводится коэффициент изотоничности і, показывающий во сколько раз увеличивается число частиц вследствие диссоциации. Таким образом , уравнение это принимает вид:

pV = n R Ti ;   n = p V / R Ti ,

откуда m = 0.29M / i.

Коэффициент і зависит от степени и характера электролитической диссоциации и может быть выражен уравнением:

і = 1 + α(n – 1),

где: α – степень электролитической диссоциации;

n – число элементарных частиц, образующихся из одной молекулы при диссоциации.

Для различных групп электролитов коэффициент і может быть подсчитан следующим образом.

1. Для бинарных электролитов с однозарядными ионами типа К+А, (α = 0,86, n = 2)

і = 1+ 0,86(2 – 1) = 1,86.

2. Для бинарных электролитов с двузарядными ионами типа К2+2– (α = 0,50; n = 2)

і = 1+ 0,50(2 – 1) = 1,5.

3. Для тринарных электролитов типа К2+2 и К2+2– (α = 0,75; n = 3)

і = 1+ 0,75(3 – 1) = 2,5.

4. Для слабых электролитов (борная кислота, лимонная кислота и т.д.)

і = 1,1.

Иногда изотоничность растворов достигается с помощью введения других фармакологически индифферентных веществ. Это бывает в тех случаях, когда основное вещество не обеспечивает изотоничности раствора, тогда прибегают к помощи натрия хлорида, натрия сульфата или натрия нитрата и рассчитывают по формуле:

formula 5.8

где М2 – молекулярная масса дополнительного вещества;

i2 – изотонический коэффициент дополнительного вещества;

m1 – количество основного вещества, г;

i1 – изотонический коэффициент основного вещества;

М1 – молекулярная масса основного вещества.

При составе инъекционного раствора из трех и более компонентов первоначально рассчитывают какой объем могут изотонировать указанные количества всех веществ. Затем определяют по разности, количество дополнительного вещества, чтобы приготовленный раствор был изотоничным. Осмотическое давление многокомпонентного раствора по закону Дальтона складывается из парциальных осмотических давлений отдельных компонентов.

Изотонические концентрации могут быть рассчитаны и по криоскопическому методу, основанному на законе Рауля. Закон Рауля определяет зависимость температуры замерзания раствора от концентрации электролитов в нем. Понижение точки замерзания прямо пропорционально количеству вещества, растворенного в данном количестве растворителя:

Δ t = К · С,

где Δt – депрессия (понижение температуры замерзания) раствора, °С;

К – криоскопическая константа растворителя;

С – концентрация вещества, моль/л.

Изотонические растворы веществ замерзают при одной и той же температуре, т.е. имеют одинаковую температуру депрессии. Температура депрессии сыворотки крови – 0,52°С и, если приготовленный раствор будет иметь депрессию 0,52°, то он будет изотоничен сыворотке крови. Для расчета необходимо знать константы депрессии, предположим 1% растворов лекарственных веществ. Искомую концентрацию изотонического раствора находят по формуле:

formula 5.9.

Например, для глюкозы (депрессия 1% раствора равна 0.1°), тогда

formula 5.10.

Общей формулой для расчетов является:

formula 5.11

где: m1 – количество вещества, необходимое для изотонирования, г;

V – объем, мл;

Δt1 – депрессия 1% раствора лекарственного вещества.

При расчете многокомпонентных систем пользуются следующими формулами:

– при двух компонентах прописи:

formula 5.12;

– при числе компонентов в прописи более двух:

formula 5.13.

Наиболее простым и удобным является метод расчета по изотоническим эквивалентам натрия хлорида.

Изотоническим эквивалентом вещества по хлориду натрия называется количество хлорида натрия, создающее в одинаковых условиях осмотическое давление, равное осмотическомудавлению 1 г данного лекарственного вещества. Например, 1 г безводной глюкозы по осмотическому эффекту эквивалентен 0.178 г хлорида натрия. Это означает, что 1 г безводной глюкозы и 0.178 г хлорида натрия изотонируют одинаковые объемы водных растворов. Или, если, например, эквивалент бромида натрия по хлориду натрия равен 0.62, то это означает, что 1 г бромида натрия и 0,62 г хлорида натрия в одинаковых объемах растворов создают одинаковые осмотические давления. Зная эквивалент лекарственного вещества по натрия хлориду, можно определить его изотоническую концентрацию в растворах. В специальных таблицах приводятся изотонические эквиваленты по хлориду натрия для лекарственных веществ. В случае, когда эквивалент лекарственного вещества неизвестен, необходимо пользоваться другими метода расчета.

Стабилизация растворов

При изготовлении и хранении лекарственных препаратов нередко наблюдается изменение их свойств, протекающее с различной скоростью и степенью проявления. Это связано с уменьшением содержания лекарственных веществ или снижением их фармакологической активности, изменением свойств лекарственных форм и т.д. Подобные изменения влияют на срок годности (хранения) препаратов, который может колебаться от нескольких часов (растворы антибиотиков) или дней (растворы ферментов) до нескольких лет. Вопросамстабильности лекарственных средств в настоящее время уделяется большое внимание.

Протекающие в препаратах процессы можно условно классифицировать на физические, химические и биологические. Условность заключается в их взаимосвязи: химические превращения могут стать причиной изменения физических свойств, в то время, как физические изменения становятся причиной нежелательных химических процессов. Биологические же процессы сопровождаются как химическими, так и физическими превращениями.

К физическим процессам, протекающим преимущественно при хранении, следует отнести укрупнение частиц дисперсной фазы, расслаивание, изменение консистенции, испарение, сублимацию и др.

Химические процессы протекают нередко при изготовлении препарата, особенно при термической стерилизации, и сопровождаются разнообразными химическими реакциями – гидролиз, омыление, окислительно-восстановительные процессы, фотохимические и энзиматические превращения, реже наблюдаются полимеризация и изомеризация и др.

Биологические процессы, обусловленные жизнедеятельностью микроорганизмов, часто приводят к нежелательным химическим превращениям действующих веществ, иногда – к изменению внешнего вида лекарственной формы.

Стабильность лекарственных препаратов зависит от многих факторов – температуры хранения, освещенности, состава окружающей атмосферы, способа приготовления, т.е. технологии лекарственной формывспомогательных веществ, вида лекарственной формы, особенно ее агрегатного состояния, упаковки и др.

Используемые в настоящее время методы стабилизации лекарственных средств – химический и физический, нередко применяются в комплексе, дополняя друг друга. Химические методы основаны на добавлении химических веществ – стабилизаторов, антиоксидантов и консервантов. Физические методы базируются на защите лекарственных веществ от неблагоприятных воздействий внешней среды, применении лекарственных и вспомогательных веществ высокой степени очистки, использовании современного технологического оснащения и результатов научных исследований в технологии лекарственных форм – применение неводных растворителей, обезвоживание препаратов, ампулирование в токе инертных газов и др.

Таким образом, стабильность препарата – это способность биологически активного вещества сохранять физико-химические свойства и фармаколо-гическую активность в течение определенного срока хранения, предусмотренного нормативно-технической документацией.

Химические методы стабилизацииСтабилизация гомогенных дисперсных систем основана на подавлении процесса разложения лекарственных веществ за счет связывания или нейтрализации тех химических соединений, которые активируют деструкцию лекарственного вещества. Такие соединения находятся в растворе в незначительных количествах, либо переходят в раствор из упаковки (стекла) при его технологической обработке (стерилизации) и хранении.

Стабильность инъекционных растворов, в первую очередь, зависит от качества исходных растворителей и лекарственных веществ, класса и марки стекла ампул и флаконов, наличия кислорода в воде и растворах, рН растворов, температуры и времени стерилизации, наличия ионов тяжелых металлов, условий хранения препаратов и т.д.

Основной принцип стабилизации препаратов предусматривает максимальное устранение факторов, способствующих изменению лекарственных веществ.

Влияние качества стекла на стабильность веществ. Медицинское стекло представляет собой твердый раствор, полученный в результате охлаждения расплавленной смеси силикатов, оксидов металлов и и некоторых солей. В зависимости от качественного и количественного соотношения оксидов металлов в стекле различают классы и марки медицинского стекла, обладающие различной химической устойчивостью.

На поверхности стекла ампул или флаконов при контакте с водными инъекционными растворами во время хранения и особенно при тепловой стерилизации в зависимости от его марки и значения рН раствора может происходить процесс выщелачивания или растворения верхнего слоя стекла. Выщелачивание – это выход из стекла преимущественно оксидов щелочных и щелочноземельных металлов, благодаря высокой подвижности ионов этих металлов по сравнению с высоким зарядом четырехвалентного иона кремния. По этой причине ион натрия даже при комнатной температуре может замещаться другими ионами. При более глубоких процессах выщелачивания ионы щелочных металлов легко перемещаются из внутренних слоев стекла на место ионов, вступивших в реакцию. Выщелачивание из стекла компонентов и их гидролиз ведут к увеличению или уменьшению величины рН раствора. Это приводит к изменениям свойств лекарственных веществ, в основе которых лежат различные химические процессы: гидролиз, окисление, восстановление, омыление, декарбоксилирование, изомеризация и др.

Опимальная концентрация водородных ионов в инъекционных растворах является существенным стабилизирующим фактором. Она достигается путем добавления стабилизаторов, которые предусмотрены в нормативно-технической документации, а также использованием комплекса технологических приемов в процессе приготовления парентеральных растворов, о чем будет изложено дальше.

Стабилизаторы могут замедлять или ускорять нежелательные химические реакции, создавать определенные значения рН растворов, повышать растворимость лекарственных веществ или удерживать последние во взвешенном состоянии. Выбор стабилизатора, в первую очередь, зависит от природы лекарственных веществ.

Среди требований, предъявляемых к стабилизаторам, можно отметить: терапевтическую индифферентность, хорошую растворимость в растворителе, эффективность в применяемых концентрациях, химическую чистоту, доступность.

Несмотря на многообразие и чрезвычайную сложность процессов, проходящих в растворах, лекарственные вещества, требующие стабилизации, можно условно разделить на три группы:

Растворы солей, образованных слабыми основаниями и сильными кислотами;

Растворы солей, образованных сильными основаниями и слабыми кислотами;

Растворы легкоокисляющихся веществ.

Механизм действия стабилизаторов

Стабилизация растворов солей слабых оснований и сильных кислот. К этой группе относятся растворы солей алкалоидов азотистых и синтетических азотистых оснований, которые занимают значительное место в ассортименте инъекционных растворов. В зависимости от силы основания растворы имеют нейтральную или слабокислую реакцию. Последняя объясняется гидролизом соли, сопровождающимся образованием слабодиссоциированного основания и сильнодиссоциируемой кислоты, т.е. образующимися ионами гидроксония ОН3+. Это явление усиливается при тепловой стерилизации.

Прибавление избытков ионов ОН3+ (т.е. свободной кислоты) понижает степень диссоциации воды и подавляет гидролиз, вызывая сдвиг равновесия влево:

Alc HCl + H2O → Alc↓ + OH3+ + Cl –

HCl + H2O → OH3+ + Cl –

Уменьшение концентрации ионов ОН3+ в растворе вследствие щелочности стекла сдвигает равновесие вправо. Нагревание раствора во время стерилизации увеличивает степень диссоциации воды и повышение рН раствора за счет выщелачивания стекла, вызывает усиление гидролиза соли, что приводит к накоплению в растворе труднорастворимого азотистого основания.

В растворах солей очень слабых оснований, малорастворимых в воде, незначительное повышение рН приводит к образованию осадка. Это наблюдается в растворах стрихнина нитрата, папаверина гидрохлорида, дибазола и др. При значительных увеличениях рН раствора (сильно щелочное стекло) иногда наблюдается выделение сильных свободных оснований, например, новокаина.

Если основания алкалоидов являются сильными или хорошо растворимыми в воде, то при повышении рН выделение осадка не происходит (основания – эфедрина, кодеина, пилокарпина). Иногда свободное основание не выпадает в осадок, т.к. способно реагировать со щелочью с образованием растворимых продуктов (морфин, апоморфин, адреналин). Кроме того, в слабощелочной среде данные растворы подвергаются окислению с изменением окраски (раствор морфина желтеет, апоморфина – зеленеет, адреналина – розовеет).

Если алкалоид или синтетическое азотистое основание имеют сложноэфирные или лактонные группировки (атропин, скополамин, новокаин, дикаин), то при нагревании слабощелочных или нейтральных растворов происходит омыление сложного эфира или лактона, сопровождающееся изменением фармакологического действия. Так, после стерилизациирастворов новокаина появляется свободная парааминобензойная кислота, благодаря чему рН раствора смещается в кислую сторону. При уменьшении рН до 8 количество разложившегося новокаина в растворе увеличивается до 11%. В литературе отмечаются сообщения о наличии анилина в растворах новокаина после стерилизации, что объясняется декарбоксилированием парааминобензойной кислоты. Применение новокаина с примесью анилина вызывает повышенную болезненность. Аналогичные процессы образования анилиновых производных отмечены также для дикаина.

Выше указанные изменения вызывают необходимость стабилизации растворов многих алкалоидов и азотсодержащих оснований. Большинство из них стабилизируют добавлением 0,1 н раствора кислоты хлористоводородной, которая нейтрализует щелочь, выделяемую стеклом, и смещает рН раствора в кислую сторону. Это создает условия, препятствующие гидролизу, омылению сложных эфиров, окислению фенольных и альдегидных групп. Количество кислоты, необходимое для стабилизации раствора, зависит от свойств лекарственного вещества. Наиболее часто добавляют 10 мл 0,1 н раствора кислоты хлористоводородной на 1 литр стабилизируемого раствора, что соответствует образованию 0,001 н раствора кислоты (рН 3-4). Это количество 0,1 н раствора кислоты хлористоводородной рекомендовано для атропина сульфата, стрихнина нитрата, апоморфина гидрохлорида, кокаина гидрохлорида, дибазола, дикаина и др.

Для получения устойчивого раствора новокаина гидрохлорида для инъекций с концентрацией 0,5-2,0% необходимо добавление 0,1 н раствора кислоты хлористоводородной до рН 3,8-4,5, что соответствует 3,4-9,0 мл 0,1 н раствора кислоты на 1 литр раствора. Для приготовления стабильного раствора новокаина (1-2%) на изотоническом растворе натрия хлорида следует добавить 5 мл 0,1 н раствора кислоты хлористоводородной на 1 литр.

Для стабилизации растворов веществ со сложной эфирной группировкой (атропин, новокаин и др.) предложено уменьшение количества 0,1 н раствора кислоты хлористоводородной до 3-4 мл на 1 литр раствора. Это связано с тем, что подкисление растворов местных анестетиков приводит к уменьшению их фармакологической активности. При снижении рН растворов от 5 до 3,2 активность новокаина падает в 8 раз.

1-5% растворы морфина гидрохлорида стабилизируют добавлением 10-20 мл 0,1 н раствора кислоты хлористоводородной на 1 литр. Как указывалось выше, морфина гидрохлорид и другие алкалоиды с содержанием фенольных гидроксилов при нагревании, особенно в слабощелочной среде, окисляются. Поэтому, для получения устойчивых растворов необходимо добавление антиокислителей (антиоксидантов), т.е. веществ, препятствующих окислению. Добавлением антиоксидантов стабилизируют растворы адреналина гидротартрата и гидрохлорида, норадреналина гидротартрата, этилморфина гидрохлорида.

Стабилизация растворов солей слабых кислот и сильных основний. В водных растворах соли слабых кислот и сильных оснований легко гидролизуются, образуя слабощелочную реакцию среды. Это приводит к образованию труднорастворимых соединений, дающих муть или осадок, что недопустимо для инъекционных растворов. Гидролитические процессы усиливаются в кислой среде, которая может создаваться за счет растворения в воде углерода диоксида. Для подавления реакции гидролиза добавляют 0,1 н раствор натрия гидроксида или натрия гидрокарбоната.

Приготовление раствора натрия нитрита проводят с добавлением 2 мл 0,1 н раствора натрия гидроксида на 1 литр (рН 7,5-8,2).

Более устойчивые растворы натрия тиосульфата, натрия кофеин-бензоата и теофиллина. Раствор натрия тиосульфата имеет среду, близкую к нейтральной, и при незначительном понижении рН разлагается с выделением серы:

formula 5.14.

Стабильные растворы получают путем добавления 20,0 г натрия гидрокарбоната на 1 литр (рН 7,8-8,4). При изготовлении растворов натрия кофеин-бензоата следует добавлять 4 мл 0,1 н раствора натрия гидроксида на 1 литр (рН 6,8-8,6).

Эуфиллин, являясь комплексной солью очень слабой кислоты (теофиллин) и слабого основания (этилендиамин), легко разлагается в кислой среде, добавление сильной щелочи к раствору эуфиллина также приводит к разложению соли. Для получения стойкого раствора используется эуфиллин сорта «для инъекций» с повышенным содержанием этилендиамина (18-22% вместо 14-18%). Вода для инъекций должна быть освобождена от углерода диоксида путем кипячения.

При необходимости оптимальное значение рН раствора поддерживают при помощи буферных растворов, однако, применение их ограничено, т.к. многие из них реагируют с лекарственными веществами в растворе.

Буферами и буферными растворами называются растворы, способные сохранять почти постоянное значение рН при добавлении к ним кислоты или щелочи в незначительных количествах.

Влияние поверхностно-активных веществ на кинетику химических реакций. Изменение рН среды – не единственный способ защиты лекарственных веществ от гидролиза. В последнее время появились работы по изучению влияния поверхностно-активных веществ (ПАВ) на кинетику химических реакций. Показано, что неионогенные и анионактивные ПАВ тормозят, а катионактивные ПАВ ускоряют процесс гидролиза целого ряда лекарственных веществ. Установлено, что в присутствии ПАВ уменьшение или увеличение скорости реакции обусловлено образованием мицеллоассоциатов молекул ПАВ. Мицеллы ПАВ имеют большие коллоидные размеры и обладают большей объемной емкостью. В пустоты мицелл под влиянием сил межмолекулярного притяжения могут проникать относительно небольшие молекулы лекарственного вещества. Молекулы с гидрофобными свойствами проникают в глубь мицеллы. Гидрофильная молекула занимает положение между отдельными молекулами мицеллы. Гидрофильная молекула лекарственного вещества присоединяется к внешней, наиболеегидрофильной части мицеллы. Образующиеся комплексные соединения обладают большей устойчивостью, чем лекарственные вещества. В связи с этим используют ПАВ для подавления гидролиза лекарственных веществ, например, анестетиков, антибиотиков и др. В каждом конкретном случае использование стабилизаторов требует тщательного изучения при введении их в состав инъекционного раствора.

За рубежом стабильные растворы теофиллина для инъекций получают путем добавления аминопропиленгликоля или диметиламинопропиленгликоля (0,75-1,5 г на 1 г теофиллина). Высокомолекулярные соединения (ВМС) также используют для стабилизации натриевых солей барбитуровой кислоты. Для стабилизации фенобарбитала натриевой соли, этаминал-натрия применяют полиэтиленгдиколь, растворы барбамила предлагают стабилизировать добавлением 5% твина-80.

Используются и другие пути, позволяющие поддерживать рН в растворе без заметных колебаний. Так как ампульное стекло вызывает изменение рН растворов, то с целью повышенияхимической стойкости ампул используют силиконовые покрытия внутренней поверхности ампул или защищают стекло пластической массой. Однако, силиконизированные и пластмассовыеампулы до сих пор не нашли широкого применения у нас в стране.

Стабилизация растворов легкоокисляющихся веществ. Присутствие кислорода, который находится в растворенном состоянии и в газовом пространстве над раствором в ампуле, является одной из основных причин окисления лекарственных веществ в растворах.

Окислению подвергаются многие лекарственные вещества: производные ароматических аминов и фенотиазина, алкалоиды и азотистые соединения с фенольными оксигруппами и аминогруппами, ряд витаминов, а также другие соединения с подвижным атомом водорода. В процессе окисления образуются неативные, а иногда и ядовитые продукты. Скорость окислительных процессов зависит от концентрации кислорода, температуры, рН среды, наличия катализаторов, агрегатного состояния, концентрации веществ в растворе и т.д.

Весьма важным фактором, влияющим на скорость окисления, как и на процесс гидролиза, является концентрация водородных ионов, которая может изменяться под влиянием различных марок ампульного стекла. Стекло, используемое для изготовления ампул, оказывает значительное влияние на стабильность лекарственных веществ при хранении.

Установлено, что нейтральность стекла, в основном, обуславливается содержанием борного ангидрида, процентное содержание которого в отечественном ампульного стекла марки НС-3 значительно меньше, чем в немецком, американском, чешском. А так как изменения рН раствора в ампулах стекла НС-3, УСП-1 наименьшие по сравнению с другими марками стекла НС-1, НС-2, АБ-1, то для получения стабильных растворов с легкоокисляющимися веществами целесообразно использовать ампулы 1 класса.

Теории окислительно-восстановительных процессов

Механизм окислительно-восстановительного процесса раскрыт в перкисной теории А.Н.Баха и И.О.Энглера и теории разветвленных цепей Н.Н.Семенова. Согласно теории цепных реакций, окисление развивается путем взаимодействия молекул исходного вещества со свободными радикалами, которые обращаются под влиянием инициирующих факторов. Свободный радикал начинает цепь окислительных превращений. Он реагирует с кислородом, образуя пероксидный радикал, который с другими молекулами легкоокисляющихся веществ образует промежуточный продукт гидропероксид и новый свободный радикал:

formula 5.15

Гидропероксид распадается с образованием свободных радикалов, которые продолжают процесс окисления новых молекул лекарственного вещества. Процесс принимает характер цепных реакций.

В ходе окисления может разветвление цепной реакции, в результате чего образуется сложная смесь продуктов окисления:

formula 5.16

Исходя из вышесказанного, процесс окисления можно замедлить следующими способами:

ввести вещества, быстро реагирующие с алкильными радикалами;

ввести соединения, быстро реагирующие с пероксидными радикалами, что снизит скорость образования гидропероксидов и генерирование радикалов;

ввести вещества, разрушающие гидропероксиды с образованием молекулярных продуктов, не образующих свободных радикалов.

Необходимо отметить, что в фармацевтической технологии ингибиторы, прерывающие цепную реакцию, не применяются, т.к. они эффективны только при полном отсутствии кислорода.

Механизм действия антиоксидантов. Важное значение имеют стабилизаторы, позволяющие предохранять лекарственные вещества от нежелательного воздействия кислорода, так называемые антиокислители или антиоксиданты.

По механизму защиты чувствительных лекарственных веществ различают две группы антиоксидантов:

Восстановители, которые обладают более высокой способностью к окислению, связывая кислород, тем самым предотвращают нежелательные процессы в растворах.

Отрицательные катализаторы или антикатализаторы – вещества, образующие комплексные соединения с ионами тяжелых металлов, которые провоцируют окислительно-восстановительные процессы.

По происходжению ингибиторы окисления делятся на природные и синтетические. Природные антиоксиданты (АО) выделяют из различных частей растений. По химическому строению большинство применяемых на практике природных АО относится к производным полифенолов.

По растворимости АО классифицируются на:

растворимые в воде;

растворимые в маслах.

Требования к АО, применяемым в производстве фармацевтичсеких препаратов:

Безвредность в применяемых дозах, отсутствие раздражающего действия, аллергических реакций как самих АО, так и продуктов их метаболизма и образующихся при воздействии с ними других ингредиентов состава.

Эффективность при низкой концентрации.

Хоровая растворимость в продуктах, подлежащих защите от окисления.

Характеристика группы восстановителей. Восстановители или прямые антиоксиданты подразделяются на несколько групп:

1. Вещества, препятствующие образованию активных радикалов из гидропероксидов. Механизм их действия:

RO2' + InH → ROOH + In'

InH - антиоксидант с подвижным атомом водорода;

In' - малоактивный радикал антиоксиданта.

К наиболее эффективным средствам этой группы относятся фенол, аминофенолы, анальгин, парааминофенол, нафтолы, ароматические амины.

2. Вещества, разрушающие гидропероксиды. Они не останавливают цепной процесс окисления, но, снижая скорость разветвления цепей, замедляют окислительные реакции. Тормозящее действие таких восстановителей тем сильнее, чем выше скорость реакции этих веществ с гидропероксидами. Это соли сернистой кислоты, органические соединения серы (натрия сульфит - Na2SO3, натрия метабисульфит - Na2S2O3, натрия бисульфит - NaHSO3, унитиол, ронгалит, тиомочевина и др.).

formula 5.17

Органические соединения, содержащие серу – сильные восстановители. Их действие основано на быстром окислении серы. Механизм их действия:

ROOH + R'SR ROH + R'2SO

ROOH + R'2SO OH + R'2SO2

Негативной стороной этой группы является летучесть и разложение их при стерилизации, которые уменьшаются в среде инертных газов (азота и т.д.).

3. Вещества, обрывающие цепь окисления по реакции с алкильными радикалами. К ним относят хиноны, нитросоединения, молекулярный йод. Учитывая, что кислород очень быстро реагирует с алкильными радикалами, эти ингибиторы малоэффективны. Они эффективны только при недостатке кислорода.

Если молекула антиоксиданта содержит несколько функциональных групп, он может оказаться ингибитором смешанного типа, например реагировать с ROOH и RO'2. В то же время, одна и та же группы может реагировать с разными частицами, например, фенолы способны взаимодействовать с перекисными и алкильными радикалами.

К восстанавливающим агентам также относятся алкоголи и энолы (хлорбутанол, аскорбиновая кислота и т.д.). Эти вещества имеют низкий редокс-потенциал (например, аскорбиновая кислота – 0,34), т.е. обладают большей интенсивностью окислительно-восстановительных процессов и поэтому окисляются быстрее, чем лекарственные вещества, связывая кислород в растворе и в воздушном пространстве над ним. Однако, для стабилизации раствора аскорбиновой кислоты необходим антиоксидант с еще более низким редокс-потенциалом, например, натрия сульфит (0,19).

Многие работы последних лет подвергли сомнению этот механизм действия антиоксидантов. Современное представление действия ингибиторов окисления связывают и с их способностью реагировать со свободными радикалами или препятствовать разложению гидропероксидов на свободные радикалы.

Стабилизация масляных растворов. Для стабилизации масляных растворов добавляют жирорастворимые антиоксиданты: бутилокситолуол (БОТ), бутилоксианизол (БОА), α-токоферол, пропилгаллат, аскорбилпальмитат, кислоту нордигидрогваяретовую, кверцетин и их синтетические смеси. Эффективность антиоксидантов этой группы зависит от исходной концентрации гидропероксидов и других продуктов окисления масла. Предложен надежный способ их удаления путем введения в масло вторичных и третичных аминов гидрохлоридов и гидробромидов с последующей термообработкой (предварительной стабилизации), что приводит к почти полному разрушению гидропероксидов. Подобное действие оказывают и некоторые лекарственные вещества – аминазина гидрохлорид, димедрол в концентрациях 10–3 – 10–4 моль/л.

Для стабилизации масляных растворов гормональных препаратов в последнее время используют растворы бензил-бензоата.

Характеристика отрицательных катализаторов. Антикатализаторы – вещества, способные образовывать прочные внутрикомплексные водорастворимые соединения с большим числом катионов, которые могут переходить в инъекционный раствор из стекла ампул, аппаратуры или могут присутствовать в лекарственном веществе в качестве примесей.

Как известно, большое влияние на процесс окисления лекарственных веществ оказывает присутствие следов тяжелых металлов, которые являются катализаторами процессов окисления. Ионы тяжелых металлов (Fe3+Cu+2Mn+2 и др.) участвуя в цепной окислительно-восстановительной реакции, способны отрывать электроны от присутствующих вместе с ними в растворах различных ионов, переводя последующие в радикалы:

Cu2+ + RCOO → Cu+ + RCOO

Cu2+ + RCOO → R'

Образовавшийся радикал может реагировать с кислородом, образуя пероксидный радикал, который далее будет участвовать в цепной реакции по приведенной ранее схеме. Частично восстановленный при этом ион металла может легко окислиться кислородом в первоначальную форму, после чего процесс повторяется:

O2

Cu+ → Cu2+

Именно цепным характером реакции объясняется, что каталитическое воздействие ионов тяжелых металлов проявляется при наличии их в очень малых количествах. Для получениястабильных растворов необходимо избавиться от них. В настоящее время предложены методы очистки от тяжелых металлов путем фильтрации через слой активированного угля и натриевой формы окисленной целлюлозы, а также образованием неактивных комплексов при максимальном координационном числе металлов или в высшем его валентном состоянии.

Для стабилизации легкоокисляющихся веществ используют следующие комплексоны: ЭДТА – этилендиаминтетрауксусная кислота, трилон Б – динатриевая соль этилендиаминтетрауксусной кислоты, тетацин-кальций, кальций-динатриевая соль этилендиаминтетрауксусной кислоты, которые хорошо растворимы в воде, термоустойчивы. Механизм стабилизирующего действия связан с переводом катионов тяжелых металлов в комплексные, практически недиссоциируемые соединения, не активные по отношению к гидроперекиси.

Подобным действием обладают гидрохинон, маннит, глицерин, 8-оксихинолин и др. Комплексоны являются косвенными антиоксидантами.

Другие способы химической защиты. Комплексная стабилизация. Скорость реакции окисления в значительной степени зависит от значения рН раствора, поскольку ионы гидроксила могут оказывать каталитическое действие. Это объясняется тем, что ион гидроксила под влиянием следов тяжелых металлов может превращаться в радикал, который участвует в цепной реакции окисления:

Cu2+ + OH – → Cu+ + OH'

OH' + RH → H2O + R'

R' + O2 → R–O–O'

H2O ↔ OH' + H+

Поэтому для замедления процессов окисления во многие растворы легкоокисляющихся веществ для создания оптимального значения рН добавляют буферные смеси или раствор хлористоводородной кислоты.

Возможность окисления (самоокисления) лекарственных веществ понижается с уменьшением концентрации кислорода в растворителе и над раствором. Поэтому растворители, используемые для производства инъекционных растворов должны быть освобождены от кислорода путем кипячения, а также насыщением углерода диоксидом или азотом.

Еще одним возможным методом стабилизации легкоокисляющихся веществ может быть использование высокомолекулярных веществ (полиглюкин, пропиленгликоль, полиэтиленоксид с низкой молекулярной массой и др.). В среде этих веществ замедляется окисление, что возможно объяснить проникновение низкомолекулярного лекарственного вещества во внутрь молекулы ВМС и, следовательно, уменьшением их реакционной способности.

Окисление может быть уменьшено за счет устранения действия света и температуры. Иногда приготовление некоторых лекарственных средств (например, раствора фенотиазина) целесообразно проводить в красном свете или при хранении использовать ампулы из светозащитного стекла.

Скорость протекания деструктивных процессов в лекарственных препаратах увеличивается под влиянием ультрафиолетового излучения. Энергия излучения активирует молекулы или атомы вещества, что в свою очередь вызывает развитие химических реакций, которые могут протекать в газах, твердых веществах и растворах. При поглощении веществом светового излучения определенной волны может происходить ускоренное разложение лекарственных препаратов. Скорость разложения зависит также от агрегатного состояния вещества. Известно, что разложение веществ в сухом виде происходит значительно медленнее по сравнению со скоростью разложения веществ в растворах. Более концентрированные растворы окисляются медленнее, чем разбавленные.

Большое значение имеет синергизм ингибиторов, когда действие нескольких веществ превосходит сумму эффекта каждого. Синергизм может быть при совместном введении ингибитора, обрывающего цепь окисления, и ингибитора, разрушающего гидропероксиды. Возможна полифунциональность стабилизатора, который может тормозить окисление как за счет возникновения пероксидного радикала, так и путем разложения гидропероксида.

Применение консервантов также способствует повышению стабильности многих препаратов в ампулах. Среди консервантов используются этиловый спирт 95%, нипагин, нипазол, хлорбутанолгидрат, смесь этилового спирта с глицерином и др.

Растворы целого ряда легкоокисляющихся веществ не могут приобрести необходимую стойкость при использовании какой-то одной формы стабилизации. В этом случае необходимо использовать сочетание стабилизирующих факторов комбинированной защиты.

К стабилизаторам лекарственных форм гетерогенных дисперсных систем (эмульсий и суспензий) можно отнести производные метилцеллюлозы, пектины, альгинаты, бентонитовые глины, аэросил, твины, спены и ряд других веществ. Нередко с целью снижения количества этих веществ и повышения их активности используют различные сочетания стабилизаторов природного, синтетического и полусинтетического происхождения.

Физические методы стабилизации ампулированных расторов. Физические методы стабилизации также направлены на максимальное устранение факторов, вызывающих или ускоряющих негативные процессы в инъекционный растворах. К технологическим приемам повышения стабильности растворов в ампулах можно отнести:

дополнительную (специальную) очистку исходных веществ или растворителей;

покрытие внутренней поверхности ампул химически стойкими пленками;

использование оптимальных методов и режимов стерилизации;

изготовление лекарственных препаратов в виде стерильных порошков или таблеток, из которых готовятся инъекционные растворы;

предварительное связывание (удаление) кислорода в растворителях;

ампулирование с применением газовой защиты.

Для удаления кислорода из воды можно использовать электролитические, химические и физические методы. Заслуживают внимание некоторые физические методы: удаление кислорода кипячением; барботажем инертнами газами; распылением воды в вакуумедистилляцией воды в среде углекислого газа или азота. В некоторых случаях возможно использование органических смол для связывания растворенного кислорода.

В условиях промышленного производства инъекционные растворов предварительное связывание кислорода в растворителе нерационально, т.к. на последующих технологических стадиях производства растворов в ампулах снова происходит его насыщение. Поэтому более целесообразно удалять его непосредственно перед заполнением ампул. Одним из способов удаления кислорода является метод, основанный на изменении растворимости газов в жидкостях при различных температурах (от 20°С до 100°С), а также использование водяного пара в качестве инертной среды.

Принцип ампулирования растворов в среде инертных газов. В газовом пространстве и в растворе содержится достаточное количество кислорода, способствующее окислению растворов лекарственного вещества. Для получения стабильных растворов необходимо максимально заменить воздух на инертный газ в ампуле и удалить кислород из раствора, т.к.растворимость газа в жидкости изменяется в широких пределах в зависимости от газа, растворителядавления и температуры. При этом раствор предварительно насыщается газом,ампулы непосредственно перед заполнением и запайкой продуваются инертным газом. В качестве инертной среды могут использоваться углекислый газ, азот, аргон.

На основании исследований, руководимых проф. Ф.А.Коневым (ГНЦЛС), разработана и внедрена технология ампулирования инъекционных растворов с газовой защитой при использовании вакуумного способа наполнения ампул.

Таким образом, устойчивость растворов легкоокисляющихся веществ зависит от многих факторов, а их стабилизация осуществляется путем использования различных технологических приемов и соблюдения ряда условий.

Ниже приведены особенности стабилизации некоторых инъекционных растворов.

1. Стабилизация растворов глюкозы

Инъекционные растворы глюкозы при стерилизации, особенно в щелочном стекле, подвергаются окислению и карамелизации с изменением цвета раствора.

При выборе стабилизатора для раствора глюкозы необходимо учитывать полифункциональный характер этого вещества. Глюкоза неустойчива в щелочной среде, под влиянием кислорода образуются оксикислоты и оксиметилфурфурол. Но она неустойчива и в кислой среде – образуется Д-глюконовая кислота и ее лактоны в результате их окисления образуется 5-оксиметилфурфурол, вызывая пожелтение раствора, что связано с дальнейшей карамелизацией.

Растворы глюкозы согластно НТД стабилизируют реактивом Вейбеля:

NaCl – 5,2 г;

Кислоты HCl разб. – 4,4 мл;

Воды для инъекций до 1 л .

Стабилизатор Вейбеля добавляют к растворам глюкозы в количестве 5% от объема независимо от ее концентрации.

Введение кислоты хлористоводородной к растворам глюкозы предотвращает процессы окисления глюкозы в щелочной среде. Следует отметить, что теоретические вопросы процессастабилизации глюкозы сложны и еще не достаточно изучены. В настоящее время считают, что натрия хлорид не способствует циклизации глюкозы, а в сочетании с хлористоводородной кислотой создает буферную систему для глюкозы, нестабильной в кислой и нейтральной среде.

2. Стабилизация раствора аскорбиновой кислоты

К легкоокисляющимся веществам относятся аскорбиновая кислота, имеющая ендиольную группу с подвижными атомами водорода.

При воздействии кислорода она переходит в 2,3-дикетогулоновую кислоту, лишенную С-витаминной активности.

В кислых растворах при рН 1,0-4,0 аскорбиновая кислота разлагается с образованием альдегида фурфурола, что обуславливает желтую окраску.

Для стабилизации применяют антиоксидант натрия метабисульфит в количестве 2,0 г на 1 л 5% раствора и ампулируют в токе углекислого газа.

Стерилизуют текучим паром при 100°С в течение 15 минут.

3. Стабилизация 5, 10 и 20% растворов новокаина

Для стабилизации этих растворов недостаточно введения кислоты хлороводородной до рН 3,8-4,5, поскольку в процессе стерилизации происходит интенсивное окисление. Поэтому используют антиоксиданты, а также их комбинации по прописи:

Новокаина 50,0 или 100,0;

Натрия метабисульфита или калия метабисульфита 3,0;

Кислоты лимонной 0,2;

Раствора 0,1н кислоты хлороводородной 10 мл;

Воды для инъекций до 1 л.

Приготовление 5% раствора новокаина для спинномозговой анестезии готовят асептически на цитратном буферном растворителе с добавлением в качестве стабилизатора 1,5% поливинола.

4. Стабилизация 10% и 20% раствора натрия-кофеин-бензоата для инъекций

Натрий кофеин-бензоат соль, образованная слабой кислотой и сильным основанием.

Стабилизируют 4 мл 0,1н раствора Na гидроксида на 1 л раствора рН 6,8-8,5.

5. Стабилизация 30% раствора сульфацил-натрий для инъекций

Стабилизируют 1н раствором Na гидроксида до рН 7,5-8,5 метабисульфитом натрия (3 г на 1л раствора).

6. Стабилизация 10% суспензии метазида

Ее готовят в асептических условиях путем диспергирования в среде 0.5% раствора КМЦ и консервируют 0,8% хлорбутанолом.

7. Стабилизация 10% раствора желатина для инъекций.

Желатин представляет собой высокомолекулярное соединение белковой природы, приготовление которого существенно отличается от других растворов.

Для приготовления раствора желатин заливают водой до набухания, плавят и нейтрализуют 1н раствором гидроокиси натрия. После охлаждения производят очистку раствора добавлением 3% активированного угля и яичного взбитого белка. Раствор нагревают до 105°С, отстаивают и добавляют стабилизатор NaCl из расчета 0,5%. Горячий раствор фильтруютчерез пластинчатые фильтры и разливают в ампулыСтерилизуют текучим паром при 100°С в течение 20 мин. а затем быстро доводят температуру до 120°С.

Натрия хлорид вводят с целью несколько понизить температуру плавления и застудневания желатина.

Использование консервантов в производстве препаратов парентерального назначения. Одной из причин снижения качества лекарственных средств является их микробная контаминация в процессе производства или применения, которая может привести к снижению терапевтического эффекта препаратов или развитию у больного различного рода заболеваний. В связи с этим инъекционные лекарственные формы можно применять только при отсутствии в них микроорганизмов, т.е. стерильными. Введение консервантов в растворы проводится в тех случаях, когда сохранение стерильности гарантировать нельзя.

Каждое антимикробное вещество, используемое для консервации лекарств, должно обеспечивать безопасность больного и необходимое качество лекарственного препарата. Исходя из этого к консервантам предъявляются следующие требования:

широкий спектр антимикробного действия при низких концентрациях;

хорошая растворимость;

совместимость с большинством лекарственных и вспомогательных веществ, упаковочными материалами;

стабильность в широком интервале рН и температуры среды в течение срока годности лекарственного препарата;

отсутствие влияния на органолептические свойства лекарственного препарата;

отсутствие способности к образованию устойчивой формы микроорганизмов.

Консерванты не должны снижать фармакологическую эффективность действующего вещества или оказывать токсическое, аллергизирующее и раздражающее действие на организм человека.

До настоящего времени не найдено еще не одного химического соединения, которые полностью отвечало бы этим требованиям. Каждый из применяемых консервантов имеет определенные ограничения, поэтому их используют в тех случаях, когда предотвратить контаминацию лекарственных средств другими способами невозможно.

В настоящее время принято следующая классификация консервантов:

Неорганические соединения.

Металлоорганические соединения.

Органические соединения:

спирты;

фенолы;

органические кислоты;

соли четвертичных аммониевых соединений;

эфирные масла.

Механизмы воздействия консервантов на микроорганизмы очень различны и определяются их химическим строением. Основным результатом при этом является нарушение жизненных функций клетки, в частности, инактивация белковой части клеточных ферментов. В зависимости от степени инактивации наступает либо гибель клетки, либо замедление ее жизненных функций. Скорость и глубина превращений, протекающих при этом, зависит как от физических (температура, концентрация, фазовое состояние, рН среды и т. д.), так и химических факторов.

Немаловажное значение имеет способ фиксации консервантов биологическими средами или объектами, входящими в систему лекарственного средства, в частности, адсорбция на поверхности клетки, на молекулах органических веществ (например, крови), или на мелкодисперсных частицах суспензии. В двух первых случаях явление адсорбции полезно, поскольку представляет собой начальный этап к достижению антимикробного эффекта. В остальных случаях адсорбция приводит к снижению концентрации консерванта в лекарственном препарате, т. е. к ослаблению антимикробной активности.

Адсорбция консервантов элементами упаковки имеет место не только в процессе изготовления лекарств, но и при их хранении. Поэтому при определении эффективных для консервирования концентрации антимикробных веществ должны учитываться потери их активности во времени.

Среди факторов, ослабляющих антимикробное действие консервантов, следует отметить присутствие в лекарственном средстве неиногенных ПАВ, которые образуют комплексы со многими консервантов, снижают их свободную концентрацию и, соответственно, антимикробный эффект.

Для консервирования жидких лекарственных препаратов могут использоваться следующие вещества: бензалкония хлорид, хлорбутол, фенилэтиловый спирт, хлоргексидина диацетат или биглюконат, тиомерсал, сорбиновая кислота, борная кислота, ронгалит, нипагин, нипазол и другие.

Лекарственные средства для внутриполосных, внутрисердечных, внутриглазных или других инъекций, имеющих доступ к спинномозговой жидкости, а также при разовой дозе, превышающей 15 мл, не должны содержать консервантов.

Перспективным подходом к решению проблемы антимикробной защиты лекарственных препаратов является применение комбинации консервантов. Это позволит расширить спектр антимикробного действия, применять их в более низких концентрациях, предупреждать возможность появления мутантов микроорганизмов. Эффективным оказалось применение фенилэтилового спирта (0,4%), ЭТДА (0,05%) в сочетании с бензалкония хлоридом, хлоргексидина ацетатом, хлорбутолом; смеси бензалкония хлорида и хлоргексидина.

Чаще использование консервантов сочетают с другими методами стерилизации (газовой или стерильной фильтрацией) для приготовления в асептических условиях растворов, не требующих тепловой стерилизации.

Таким образом, выбор консерванта определяется составом лекарственного средства, рН среды, режимом его применения. Только комплексный подход и строгое соблюдение требований GMр к производству стерильной продукции будет способствовать решению проблемы антимикробной защиты лекарственных препаратов.

Фильтрация инъекционных растворов

Источники механических загрязнений инъекционных растворов

Практически загрязнение инъекционных препаратов может происходить на всех стадиях производства. Загрязнения парентеральных препаратов делят на три типа: химические (растворимые), микробные и механические. Два последних типа загрязнений тесно связаны между собой: часто одинаковы их источники, их одновременно показывает большинство современных приборов, аналогичны и методы борьбы с ними.

Источники возможных загрязнений имеют широкий диапазон. Основным из них являются: воздух производственного помещения, исходное сырье и растворитель, технологическое оборудование, коммуникации, материалы первичной упаковки (ампулыфлаконы, пробки), фильтрующие перегородки, обслуживающий персонал.

Из этих источников в инъекционный раствор могут попасть частицы металла, стекла, резины, пластмасс, угля, волокна асбеста, целлюлозы и т.д. На всех твердых частицах могут бытьадсорбированы микроорганизмы.

Одним из требований ГФ ХI изд., предъявляемым к препаратам для инъекций, является полное отсутствие механических включений, видимых невооруженным глазом, при производстве растворов в ампулах (малые объемы). Для больших объемов растворов (100 мл и более) фармакопеи США, Великобритании, а также требования Австралии ограничивают содержание даже меньших частиц. Ужесточение требований к чистоте больших объемов растворов связано с тем, что с увеличением объема раствора большее количество механических включений поступает в организм больного.

Тяжесть неблагоприятных последствий попадания инородных частиц зависит от их размера, природы и количества. Механические включения, находящиеся в инъекционном растворе, могут привести к образованию тромбов, гранулем, аллергических реакций и других патологических явлений. Так, содержащийся а асбесте хризотил может быть причиной злокачественных новообразований. В больших объемах внутривенных вливаний могут содержаться механические включения в виде волокон целлюлозы и частиц пластмасс, которые являются причиной образования микротромбов в легких.

Исходя из вышеуказанного, очевидно, что введение в регламентирующие документы различных стран требований, ограничивающих количества невидимых невооруженным глазом механических частиц, является важным условием, обеспечивающим высокое качество инъекционного раствора.

Инструментальный контроль содержания механических примесей в инъекционных растворах стал возможен благодаря использованию оптико-электронных приборов. Для количественной оценки содержания механических включений в жидкостях получил распространение метод фильтрации через мембранные фильтры, который применяется и в нашей стране.

Основным недостатком данного метода является его трудоемкость и большая погрешность субъективного измерения. Этих недостатков лишен телевизионный метод, благодаря системе рMS фирмы «Milliрore» для подсчета и измерения частиц, основанный также на процессе фильтрации.

Более совершенным устройством для определения содержания количества частиц в растворах являются приборы, основанные на кондуктометрическом и фотоэлектрическом методах регистрации частиц.

В нашей стране на основе фотоэлектрического метода разработан счетчик частиц в жидкости типа ГЗ 1. Прибор позволяет измерять частицы диаметром 5-100 мкм.

Итак, нормативно-техническая документация предъявляет высокие требования к чистоте инъекционных растворов, что достигается их фильтрованием.

Важнейшей частью любого фильтра является фильтровальная перегородка, которая должна задерживать твердые частицы и легко отделяться от них, обладать достаточной механической прочностью, низким гидравлическим сопротивлением и химической стойкостью. Она не должна изменять физико-химические свойства фильтрата. Обеспечивать возможность регенерации, быть доступной и дешевой.

Требования, предъявляемые к фильтрам и фильтрующим материалам для инъекционных растворов, значительно выше уже перечисленных.

фильтрующие материалы должны максимально защищать раствор от контакта с воздухом; задерживать очень мелкие частицы и микроорганизмы; обладать высокой механической прочностью, чтобы препятствовать выделению волокон и механических включений; противодействовать гидравлическим ударам и не менять функциональные характеристики; не изменять физико-химический состав и свойства фильтрата; не взаимодействовать с лекарственными, вспомогательными веществами и растворителями; выдерживать тепловуюстерилизацию.

Фильтровальные материалы перед употреблением должны быть обязательно промыты до полного удаления растворимых веществ, твердых частиц или волокон.

Выбор фильтрующих перегородок обуславливается физико-химическими свойствами фильтруемого раствора (растворяющая способность жидкой фазы, летучесть, вязкость, рН среды и др.), концентрацией и дисперсностью твердой фазы, требованиями к качеству фильтрата, масштабами производства и т.д.

При производстве растворов для инъекций чаще используют тонкое фильтрование как основное или предварительное, предшествующее микрофильтрованию.

фильтрующие перегородки, используемые для данной цели, могут задерживать частицы как на поверхности, так и в глубине фильтрующего материала. В зависимости от механизма задержания частиц различают фильтры глубинные (пластинчатые) и поверхностные или мембранные.

Глубинное фильтрование. При глубинном фильтровании частицы задерживаются на поверхности и, главным образом, в толще капиллярно-пористого фильтра. Улавливание частиц происходит за счет механического торможения и удержания в месте пересечения волокон фильтрующей перегородки; в результате адсорбции на фильтрующем материале или на участке капилляра, имеющего изгиб или неправильную форму; за счет электро-кинетического взаимодействия. Эффективность фильтра зависит от диаметра, толщины волокна и плотности структуры фильтра. Этот способ фильтрации целесообразно применять для малоконцентрированных суспензий (с объемным содержанием твердой фазы менее 1%, т.к. постепенно происходит закупоривание пор и возрастает сопротивление перегородки).

Глубинные фильтры производятся из волокнистого и зернистого матерала, тканых, спрессованных, спеченных или другим образом соединенных, образующих пористую структуру.

Примерами волокнистых материалов натурального происхождения могут служить шерсть, шелк, хлопчатобумажные ткани, вата, джут, льняная ткань, асбест, целлюлозное волокно. Среди искусственных волокон можно выделить: ацетатное, акриловое, фторуглеродное, стекловолокно, металлическое и металлокерамическое волокно, нейлон, капрон, лавсан. В фармацевтической промышленности, кроме того, используют бытовые и технические ткани: медаполам, бельтинг, фильтробельтинг, миткаль, фильтромиткаль, хлорин, ткань ФПП, целлюлозно-асбестовые ткани.

Из зернистых материалов наиболее распространены диатомит, перлит, активированный уголь и др. Диатомит получают из кремнеземных панцирей водорослей – диатомей. Перлит – это стекловидная горная порода вулканического происхождения, используется, в основном, для изготовления патронных фильтров. Зернистые материалы нашли свое применение дляфильтрования трудно фильтруемых жидкостей (биологические жидкости, раствор желатина для инъекций и т.д.).

Глубинные фильтры и префильтры, содержащие асбестовые и стеклянные волокна, не должны применяться для парентеральных растворов из-за возможности выделения вредных для организма или труднообнаруживаемых волокон.

Большая поверхность адсорбции может привести к потерям действующих веществ на фильтре, а задержание в порах микроорганизмов – к их размножению и загрязненности фильтрата. Поэтому рекомендуется такие фильтры эксплуатировать не более 8 часов.

Мембранное фильтрование. Поверхностное фильтрование происходит с образованием осадка на поверхности перегородки. Осадок образует дополнительный фильтрующий слой и постепенно увеличивает общее гидравлическое сопротивление продвижению жидкости. Роль перегородки, в этом случае, состоит в механическом задержании частиц. К этой группе относятся мембранные фильтры.

При мембранном или ситовом фильтровании все частицы, имеющие размер больше, чем размер пор фильтра, задерживаются на поверхности. Мембранные фильтры изготовлены изполимерных материалов. Фторопластовые мембраны устойчивы в разбавленных и концентрированных растворах кислот, щелочей, спиртов, эфиров, хлороформа и масел. Hейлоновые и полиамидные – в сильных щелочах и хлороформе. Полиамидные ограниченно совместимы со спиртами. Заводы-изготовители указывают жидкости, не подлежащие фильтрованию, и предельные значение рH, которые выдерживают данный материал.

Для ситового фильтрования используют мембраны сетчатого типа, называемые ядерными или капиллярно-пористыми. Такие мембраны производят из прочных полимерных материалов (поликарбонат, лавсан и др.), которые подвергают бомбардировке в ядерном реакторе. Толщина таких фильтрующих перегородок составляет 5-10 мкм. В настоящее время в фармацевтической промышленности за рубежом используют мембраны сетчатого типа фирмы «HУКЛЕПОРЕ» и «ДЖЕЛМАН» (из сополимеров акрилонитрила и винилилденхлорида).

Микропористые мембраны используются для очистки растворов, содержащих не более 0,1% твердых частиц. Ситовой эффект мембранных фильтров объясняет быстрое засорение их по сравнению с глубинными. Поэтому для фильтрации инъекционных растворов наиболее перспективным является сочетание обоих типов фильтрующих сред или использование системы серийной фильтрации, когда фильтруемый раствор последовательно прохдит через несколько мембранных фильтров, имеющих прогрессивно уменьшающийся размер пор. Причем мембранные перегородки должны применяться в заключительной стадии очистки, главным образом, для освобождения от мелких частиц и микроорганизмов.

Конструкции фильтрующих установок, используемых в производстве инъекционных растворов

К поверхностным фильтрующим установкам, работающим под действием гидростатического давления столба жидкости, можно отнести песочные фильтры и фильтр ХHИХФИ.

Песочные фильтры представляют собой резервуары с несколькими слоями гравия и кварцевого песка. Применяются преимущественно для очистки воды и в тех случаях, когда содержание твердой фазы невелико. Если же количество твердой фазы значительно – фильтрация производится на тканевых перегородках.

Большое распространение получил фильтр ХHИХФИ, предложенный Ф.А.Коневым и Д.Г.Колесниковым (рис. 5.16). фильтр состоит из корпуса и перфорированной катушки-трубы, на которую наматывается до 208 м марли, свернутой в виде слабого жгута.

фильтр ХHИХФИ

Рис. 5.16. фильтр ХHИХФИ1 – корпус; 2 – перфорированная трубка; 3, 8 – ограничители; 4, 5, 7 – патрубки; 6 – фильтрующий материал

При намотке полосы марлевого жгута должны плотно прилегать друг к другу до получения требуемой толщины фильтрующего слоя (40-50 мм). Фильтруемая жидкость поступает впатрубок и через слой фильтрующего материала проходит во внутрь катушки-трубы, откуда удаляется через патрубок. Слой марли задерживает частицы размером 10 мкм. Для задержания частиц размером 5-7 мкм в качестве фильтрующего материала могут использоваться синтетические волокна на основе поливинилхлорида, фторопласта, полипропилена.

Особенностью данного фильтра является направление потока фильтрации. Фильтруемая жидкость проходит через фильтрующий слой не перпендикулярно, а под углом, что увеличивает путь раствора через фильтр и значительно улучшает качество фильтрата.

В заводских условиях предварительную фильтрацию больших объемов инъекционных растворов осуществляют на установках ХHИХФИ, которые последовательно содержат два или несколько фильтров ХHИХФИ и работают под постоянным давлением столба жидкости (не менее 1 м).

Регенерацию фильтрующего слоя проводят острым паром в течение 20-30 минут, затем промывают горячей водой.

Среди префильтров, работающих под давлением и вакуумированием, используются друк- и нутч-фильтры. Принцип работы и устройства нутч-фильтра лежат в основе фильтра «грибка», который является одной из простейших конструкций, применяемых для фильтрации небольших объемов инъекционных растворов.

В настоящее время эти фильтрующие установки используют для предварительной очистки. Окончательную фильтрацию проводят с помощью стерильного фильтрования.

Стерильная фильтрация. Под стерильной фильтрацией понимают освобождение растворов термолабильных веществ от микроорганизмов, их спор, продуктов жизнедеятельности (пирогенов) с помощью глубинных и мембранных фильтровальных перегородок.

По конструкции фильтрующего элемента различают дисковые и патронные фильтры. Толщина мембран – 50-120 мкм, диаметр пор 0,002-1 мкм. Мембранные фильтры могут работать под вакуумом и давлением.

Основное действие микропористых перегородок, применяемых в этих случаях состоит в адсорбции микроорганизмов на большой поверхности, образуемой стенками пор фильтра. Адсорбционная способность фильтров может зависеть от вида микроорганизмов, их концентрации в растворе и условий фильтрованияСтерильной фильтрации обязательно предшествует предварительная очистка раствора для инъекций при помощи глубинных или мембранных фильтров с большим диаметром пор. Префильтры задерживают механические частицы и некоторые «крупные» микроорганизмы.

Мембранные фильтры, используемые для стерильной фильтрации, различают по материалу, способу получения пористой перегородки и ее геометрической форме, структурным особенностям пористого мембранного слоя и т.д.

По способу получения мембраны классифицируют на ядерные (из макромономерных пленок), пленочные (из растворов и расплавов полимеров), порошковые и волокнистые.

В зависимости от используемого материала мембранные фильтры классифицируются на следующие виды:

1. Мембранные фильтры из природных полимеров. Исходным сырьем для их получения являются эфиры целлюлозы. Мембраны этого типа, полученные в форме ленты большой длины, выпускаются в виде плоских дисков. К недостаткам относится их хрупкость, неустойчивость ко всем органическим растворителям (кроме спиртов), ограниченная термостойкость. Поэтому данные мембраны, выпуск которых был организован ранее других, в настоящее время используются ограниченно. Для фильтрации растворов, приготовленных на органических растворителях, используют мембраны из регенерированной целлюлозы, характеризующиеся устойчивостью в органических средах.

2. Мембранные фильтры из синтетических полимеров. Популярность данных фильтров в настоящее время объясняется их достаточной механической прочностью, эластичностью, термоустойчивостью, стойкостью в различных жидких средах. Микрофильтры из синтетических полимеров получают фазоинверсным методом из раствора полимера или методом контролируемого вытягивания, заключающемся в равномерном растягивании во всех направлениях непористой полимерной пленки, например, полипропиленовой или фторопластовой. Мембраны из синтетических полимеров широко используются для производства патронных фильтровальных элементов с гофрированной фильтрующей перегородкой. Изготавливают различные модификации таких мембран, рассчитанных на широкий диапазон фильтруемых объектов.

Так, фирма «MILLIрORE» выпускает мембраны из поливинил-идендифторида как с гидрофобными, так и с гидрофильными свойствами, что позволяет использовать их для фильтрацииводы, водных растворов и органических сред. Фирмой «рACE» выпускаются двухслойные мембраны из полиамида, обладающие таким уникальным свойством, как природный электро-кинетический потенциал, величина которого зависит от рH среды. Положительный заряд мембран способствует удалению из фильтруемых жидкостей отрицательно заряженных частиц. Это важно для освобождения фильтруемых сред от микроорганизмов и некоторых продуктов их жизнедеятельности, а также микровключений органической природы, т.к. большая часть этих объектов характеризуется отрицательным зарядом. Для фильтрации органических растворителей используются также микрофильтры из политетрафторэтилена, характеризующиеся высокой гидрофобностью. Однако широкое их применение ограничивается сравнительно высокой стоимостью.

К этой группе относятся так называемые трековые или ядерные мембраны, получаемые облучением непористой пленки полимера тяжелыми металлами, ионами или осколками деления с последующим химическим травлением треков. Эти мембраны производятся Институтом экспериментальной и теоретической физики АH России и фирмой «NUCLEрORE» в США. Ядерные фильтры имеют равномерно распределенные на его поверхности цилиндрические поры. Для того, чтобы предотвратить возможность слияния двух соседних пор, фирма «NUCLEрORE» выпускает мембраны, поры которых расположены под углом 34° друг к другу.

Общеизвестно, что скорость течения вязкой жидкости через капилляр обратно пропорциональна его длине. Ядерные фильтры самые тонкие из всех и имеют небольшую длину капилляра.

Ядерные фильтры разрешены Министерством здравоохранения для использования при фильтрационной очистке крови, жидких лекарственных препаратов, растворов белков, вакцин.

3. Волокнистые мембранные фильтры. Получают спеканием полимерных волокон и могут лишь условно быть причислены к мембранным микрофильтрам, поскольку по своей структуре они приближаются к глубинным волокнистым фильтрам. Их небольшая толщина ( ~20 мкм), к сожалению, не обеспечивает требуемой эффективности фильтрации по показателю«стерильность».

К относительно новому типу микрофильтров принадлежат мембраны, изготавливаемые в виде полых волокон. Выпускаемые в таких системах фильтровальные элементы представляют собой пучки параллельно уложенных и смонтированных в торцевых фланцах пористых капилляров с размером от 0,1 до 0,45 мкм, что, примерно, в два раза превышает толщину обычных мембран. Hо при этом фильтрующая поверхность патрона высотой 250 мм в 2-4 раза больше поверхности традиционных гофрированных фильтр-патронов. Полые волокна получают продавливанием расплава или раствора полимера через насадку определенной формы. Данный тип микрофильтров может быть весьма перспективным для стерилизующей фильтрации, однако он требует дополнительного исследования.

4. Hаиболее распространенными являются так называемые пленочные мембраны глубинного типа с глобулярно-ячеистыми или глобулярно-фибриллярными порами. Их получают из раствора или расплава полимера с помощью одного из трех методов: сухого, мокрого или смешанного. При сухом формовании растворитель удаляют испарением, при мокром используют осадитель, при смешанном – частичное испарение и осаждение полимераПористую структуру иногда получают переводом раствора полимера в отвержденное состояние через стадию образования геля. Удаляя низкомолекулярную фазу и сохраняя первоначальный объем, получают твердый продукт с высокой пористостью.

Hаиболее распространенными материалами для изготовления мембран глубинного типа являются различные производные целлюлозы, полиамиды, поликарбонаты, политетрафторэтилен. Мембраны глубинного типа примерно в 10 раз толще сетчатых, поэтому количество адсорбированной ими жидкости будет больше. Однако преимуществом данных фильтров является более низкая скорость забивания и, следовательно, большая экономичность, чем у трековых мембран. Мембраны этого типа выпускаются практически всеми фирмами, занимающимися разработкой и производством мембранных фильтров. Их выпуск налажен в Казани, Таллине и т.д. Hаиболее известны фильтры «ВЛАДИПОР», разработанные ВHИИ синтетических смол. Институтом физико-органической химии Беларуссии разработаны новые микрофильтрационные мембраны для стерилизующей фильтрации из капрона.

5. В последние годы появилось большое количество композитных керамических мембран, получаемых методом порошковой металлургии. Керамические мембраны такого типа, как правило, представляют собой трубу с порами порядка 15 мкм, изготовленную из чистого оксида алюминия, с внутренней стороны которой методом порошковой металлургии или зольно-гелевым способом наносится селективный слой оксида алюминия толщиной 1 мкм с порами от 10 до 0,1 мкм. Керамические мембраны устойчивы в органических и водных средах при различных значениях рH, температур, при перепаде давления и подвергаются регенерации. Однако получение стерильных фильтратов ограничено из-за малой толщины селективного слоя.

6. Металлические мембранные фильтры. К ним относятся мембраны из серебра, получаемые методом порошковой металлургии, выпускаются в форме дисков с размерами пор 5; 3,5; 0,8; 0,2 мкм. Преимуществом данных мембран является их бактериостатическое действие. Серебряные мембраны, к сожалению, являются дорогостоящими, поэтому они применяются лишь в исключительных случаях.

Общим недостатком всех мембранных фильтров является их быстрое загрязнение микроорганизмами и вследствие этого, снижение производительности процесса. Предложено несколько способов повышения эффективности фильтрования:

флокуляция микрочастиц;

применение ультразвука;

использование префильтров и фильтров с анизотропной структурой.

Флокуляция микрочастиц происходит благодаря присутствию электрических зарядов на поверхности частиц. Укрупненные флокулы легко задерживаются на поверхности мембраны; кроме того, концентрационный слой, образованный из них способен задерживать частицы меньших размеров, чем сами флокулы. Подобное взаимодействие происходит между противоположно заряженными частицами и материалом мембраны.

Применение ультразвука разрушает концентрационный слой на поверхности мембраны, при этом производительность мембран со временем снижается незначительно, что повышает эффективность процесса очистки.

Перспективным направлением борьбы с быстрым забиванием пор является использвание префильтра, серии последовательно расположенных мембран с постепенно уменьшающимися размерами пор, а также применение фильтров с анизотропной структурой.

Для предотвращения образования осадка на мембране и закупоривания пор может быть использован метод создания псевдоожиженного слоя над поверхностью фильтра. Для этой цели предложено использовать полистирольные или стеклянные шарики с диаметром 0,3-0,7 мм, при этом проницаемость фильтрата возрастает в два раза.

Существенно повысить производительность процесса позволяет создание тангенциального потока у поверхности фильтра, например, за счет вращения фильтрующего элемента.

Для стерилизующей фильтрации жидких лекарственных препаратов более предпочтительно использовать фильтрование под давлением, чем вакуумное. Создание давления позволяет повысить производительность процесса, предотвращает подтеки внутри системы и направляет конечный стерильный продукт непосредственно в приемный сборник, предупреждая испарение растворителя.

Бактериальные фильтры. К бактериальным фильтрам относятся так называемые керамические свечи, которые имеют вид полых цилиндров из неглазированного фарфора, открытых с одного конца. Их получают спеканием керамических порошков с добавлением связывающих веществ и пластификаторов. Данные фильтры имеют размер пор 5-7 мкм.

Фильтрование через них проводят двояко: либо жидкость вводят внутрь фильтра и она, просачиваясь через пористые стенки, вытекает в стерильный сосуд (свечи Шамберлена), либо наоборот, жидкость просачивается через стенки внутрь свечи и оттуда она выводится наружу (свечи Беркефельда). Свечи работают под вакуумом (по типу воронки Бюхнера).

Отечественной промышленностью выпускаются керамические свечи – фильтры ГИКИ (разработанные в Государственном институте керамических изделий) разной пористости. Для предварительного фильтрования применяются фильтры Ф1 и Ф2 (размер пор 4,5-7 мкм и 2,5-4,5 мкм соответственно); для стерилизации – Ф11 (0,9 мкм), который задерживает микроорганизмы и бактериальные споры. В связи с прорастанием фильтров (засасывание микроорганизмов внутрь свечи) необходима их периодическая очистка прокаливанием с одновременной стерилизацией сухим паром при температуре 160-170°С в течение 1 часа.

Стеклянные фильтры, представляют собой пластинки, сваренные из стеклянных зерен. фильтры с большей величиной пор используются для предварительной фильтрации. Стеклянный фильтр N 5 с размером пор 0,7-1,5 мкм, работающий под вакуумом, применяется для стерильной фильтрации.

К группе бактериальных глубинных фильтров можно отнести фильтры Зейтца, а из отечественных – фильтр Сальникова. Фильтрующей перегородкой служат асбестовые пластинки диаметром 300 мм.

Чистота раствора для инъекций во время фильтрования может контролироваться с помощью специальных счетчиков частиц проточного или периодического типа. После получения удовлетворительных результатов чистоты раствора по всем показателям он передается на стадию наполнения ампул или флаконов.

Фильтр Сальникова

Рис. 5.17. Фильтр Сальникова1, 2 – крышка; 3 – рама; 4 – сетка; 5, 7 – штуцер; 6 – шпилька; 8 – гайка

Методы стерилизации

По требованиям Государственной Фармакопеи ХI-го издания все готовые лекарственные препараты должны выдерживать тест на микробиологическую чистоту. Поэтому процессстерилизации имеет большое значение при изготовлении всех лекарственных форм, а особенно инъекционных.

Под стерилизацией (обеззараживание, обеспложивание) понимают совокупность физических, химических и механических способов освобождения от вегетативных и покоящихся форм микроорганизмов (H. Horn, 1984).

ГФ ХI издания определяет стерилизацию как процесс умерщвления в объекте или удаления из него микроорганизмов всех видов, находящихся на всех стадиях развития.

Поскольку к производству стерильных лекарственных форм предъявляют высокие требования по микробиологической чистоте (надежность стерильных инъекционных препаратов должна быть не ниже 10–6), то обеспложиванию подвергаются не только готовый продукт, но и используемое оборудование, вспомогательные материалы, фильтры, растворители, исходные вещества. Выбор того или иного способа стерилизации должен основываться на экономических соображениях и технологичности обработки, включая возможность ееавтоматизации. От правильно подобранного метода стерилизации зависит качество производимой стерильной продукции.

В технологии лекарственных форм промышленного производства в настоящее время используют 3 группы методов стерилизации:

Механические

Химические

Физические

Механические методы стерилизации

Стерилизующая фильтрация. Микробные клетки и споры можно рассматривать как нерастворимые образования с очень малым (1-2 мкм) размером частиц. Подобно другим включениям, они могут быть отделены от жидкости механическим путем – фильтрованием сквозь мелкопористые фильтры. Этот метод стерилизации включен в ГФ ХI для стерилизации термолабильных растворов.

По механизму действия фильтрующие перегородки, используемые для стерильной фильтрации, подразделяют на глубинные и поверхностные (мембранные) с размером пор не более 0,3 мкм.

Глубинные фильтры характеризуются сложным механизмом задержания микроорганизмов (ситовым, адсорбционным, инерционным). Ввиду большой толщины таких фильтров удерживаются и частицы меньшего размера, чем размер пор фильтрующей перегородки.

Глубинные фильтры бывают: керамические и фарфоровые (размер пор 3-4 мкм), стеклянные (около 2 мкм), бумажно-асбестовые (1-1,8 мкм). Недостатками керамических и фарфоровых фильтров является продолжительность стерилизации, потеря раствора в порах толстого фильтра, образование микротрещин из-за хрупкости материала и, следовательно, ненадежность стерилизации.

Стеклянные фильтры малопроизводительны, бумажно-асбестовые фильтры не рекомендуются для стерилизации инъекционных растворов, поскольку они состоят из волокнистых материалов и имеется угроза отрыва волокон от фильтра. Попадая в организм с раствором, такие волокна могут вызывать различные патологические реакции.

Получившие в последние годы большое распространение для стерилизующей фильтрации микропористые мембранные фильтры, лишены этих недостатков.

Мембранные фильтры представляют собой тонкие (100-150 мкм) пластины из полимерных материалов, характеризующиеся ситовым механизмом задержания микроорганизмов и постоянным размером пор (около 0,3 мкм). Во избежание быстрого засорения фильтра мембраны используют в сочетании с префильтрами, имеющими более крупные поры. Пристерилизации больших объемов растворов оптимальным является применение фильтров обоих типов.

Использование глубинных и мембранных фильтров обеспечивает необходимую чистоту, стерильность и апирогенность растворов для инъекций.

Стерилизующая фильтрация имеет преимущества по сравнению с методами термической стерилизации. Для многих растворов термолабильных веществ (апоморфина гидрохлорид, викасол, барбитал натрия и другие) он является единственно доступным методом стерилизации. Метод весьма перспективный в производстве глазных капель.

Химические методы стерилизации

Эти методы основаны на высокой специфической (избирательной) чувствительности микроорганизмов к различным химическим веществам, что обусловливается физико-химической структурой их клеточной оболочки и протоплазмы. Механизм антимикробного действия многих таких веществ еще не достаточно изучен. Считают, что некоторые вещества вызывают коагуляцию протоплазмы клетки, другие – действуют как окислители, ряд веществ влияет на осмотические свойства клетки, многие химические факторы вызывают гибель микробиологической клетки благодаря разрушению ферментной системы. Основой любого варианта химической стерилизации является взаимодействие бактерицидного вещества с компонентами микробной клетки или споры. Химическая стерилизации подразделяется на стерилизацию растворами (веществами) и стерилизацию газами (газовая стерилизация).

Стерилизация растворами или веществами. Стерилизацию растворами (веществами) серийно выпускаемой инъекционной продукции в заводских условиях не используют, так как введение в раствор постороннего биологического активного вещества нежелательно из-за возможного химического взаимодействия стерилизующего агента с действующими компонентами, а также из-за возможных побочных действий этого агента на организм человека. Еще одно принципиальное ограничение данного метода связано с тем, что практически любое бактерицидное вещество обладает определенной селективностью и его эффективность проявляется при высоких концентрациях или часто в определенных интервалах рН, недопустимых для живых организмов. Этот вид стерилизации используют для обеззараживания различной аппаратуры, трубопроводов и другого оборудования, применяемого в производстве стерильной продукции.

Газовая стерилизация. Своеобразной химической стерилизацией является метод стерилизации газами. Преимуществом метода является возможность стерилизации объектов в пластмассовой упаковке, проницаемой для газов. В герметическую камеру вводят стерилизант – смесь этиленоксида и углерода диоксида в соотношении 9:1. Углекислый газ добавляют в связи со взрывоопасностью окиси этилена. При стерилизации стерилизант поступает в аппарат под давлением до 2 кгс/см2 (196133 Н/м2) при температуре 43-45°С. Продолжительностьстерилизации зависит от проницаемости упаковки, толщины слоя материала и продолжается от 4 до 20 часов. Затем этиленоксид удаляют продуванием стерильным воздухом (азотом) или путем вакуумирования.

При химической стерилизации газами погибают все вегетативные формы микроорганизмов и плесневые грибы.

Для стерилизации донорского материала, растворов кровезаменителей или продуктов, полученных из крови, широко применяют β-пропиолактон.

Главный недостаток химических методов стерилизации – необходимость освобождения простерилизованного объекта от остатков стерилизанта и продуктов возможного взаимодействия. Широкому распространению этого метода препятствуют длительность стерилизации, высокая стоимость, возможность побочного действия химического агента на обслуживающий персонал и, тем не менее, для ряда лекарственных препаратов – это единственно надежный способ стерилизации в современных условиях.

Использование консервантов. Добавление консервантов условно можно отнести к методам химической стерилизации. Введение консервантов в растворы проводится в тех случаях, когда нельзя гарантировать сохранение стерильности. При этом возможно снижение температуры стерилизации или сокращение времени ее проведения.

Механизмы воздействия консервантов на микроорганизмы очень различны и определяются их химическим строением. Основным результатом при этом является нарушение жизненных функций клетки, в частности, инактивация белковой части клеточных ферментов. В зависимости от степени инактивации наступает либо гибель клетки, либо замедление ее жизненных функций.

Физические методы стерилизации

Тепловая (термическая) стерилизация. В настоящее время монопольное положение среди возможных методов стерилизации в фармацевтическом производстве занимает тепловаястерилизация.

В зависимости от температурного режима тепловая стерилизация подразделяется на:

·        паром под давлением (автоклавирование);

·        текучим паром;

·        тиндализацию;

·        воздушную.

Стерилизация паром под давлением. Автоклавирование – это стерилизация растворов, устойчивых к нагреванию, паром под давлением 1,1 атм при температуре 119-121°С. В данных условиях погибают не только вегетативные, но и споровые микроорганизмы за счет коагуляции белка клетки.

Этот традиционный способ стерилизации обладает сегодня преимуществом перед другими по трем причинам. Во-первых, он дает возможность стерилизации препаратов в конечной герметичной упаковке, что исключает опасность вторичной контаминации. Во-вторых, благодаря длительной практике использования он обеспечен достаточно надежной аппаратурой. И, в-третьих, на сегодняшний день он наиболее экономичен.

При этом методе происходит комбинированное воздействие на микроорганизмы высокой температуры и влажности, при этом погибают самые стойкие споры. Коагуляция белковых веществ в этих условиях начинается при температуре 56°С.

Стерилизацию паром под давлением проводят в стерилизаторах различной конструкции цилиндрической или квадратной формы. Стерилизаторы квадратной формы типа АП-7 (рис. 5.25.), АП-18 имеют двери с двух сторон: через одну происходит загрузка нестерильной продукции; через другую – выгрузка простерилизованной. Корпус автоклава нагревается глухим паром, чтобы не было его конденсации в рабочей камере. Затем в камеру для вытеснения воздуха подается острый пар. Отчет времени стерилизации начинается с момента достижения заданного давления по манометру. Стерилизаторы оснащены автоматической контрольной аппаратурой, с помощью которой на контрольной ленте записывается давление и времястерилизации. Условия стерилизации продукции указаны в промышленных регламентах или другой нормативно-технической документации.

Устройство парового стерилизатора АП-7

Рис. 5.25. Устройство парового стерилизатора АП-71 – корпус; 2 – крышка; 3 – теплоизоляция; 4 – стерилизационная камера; 5 – клапан предохранительный; 6 – пульт управления; 7 – полка; 8 – подача острого пара

Стерилизацию растительных масел и жиров в заводских условиях осуществляют паром под давлением в герметически закрытых сосудах при температуре 119-121°С и давлении 1,0-1,1 атм. в течение 2 часов.

Автоклавированию также подвергаются установки для стерилизующего фильтрования, фильтрующие перегородки и другой вспомогательный материал, используемый втехнологическом процессе производства инъекционных лекарственных форм.

Среди недостатков метода можно выделить невозможность стерилизации растворов, содержащих термолабильные вещества, опасность работы с паром под давлением, отсыревание многих материалов во время стерилизации и др.

Стерилизация текучим паром. Растворы веществ, термически малоустойчивые, иногда стерилизуют при 100°С текучим паром (без примеси воздуха и избыточного давления). Насыщенный пар убивает только вегетативные формы микроорганизмов и при наличии в объекте споровых форм этот метод неэффективен.

Тиндализация (дробная стерилизация). Для термолабильных веществ, а также для растворов в шприц-ампулах стерилизацию иногда проводят методом тиндализации. Суть метода заключается в трехкратном нагревании растворов до 40-60°С с перерывами в сутки, в течение которых объекты термостатируют при температуре 37±1°С для прорастания споровых форм в вегетативные.

Стерилизация сухим жаром (воздушная стерилизация)Стерилизация сухим жаром, проводимая в аэростерилах или других аппаратах этого типа, также высокоэффективна. При этом погибают все формы микроорганизмов за счет пирогенетического разложения белковых веществ. Однако, высокая температура нагрева (160-200°С), длительное время воздействия (1-2 часа) и сухой горячий воздух оказывает повреждающее действие на стерилизуемые объекты и, следовательно, ограничивают возможности данного способа.

Инъекционные растворы не подвергают стерилизации сухим жаром, так как из-за плохой теплопроводности воздух не обеспечивает быстрый нагрев растворов до температурыстерилизации, а длительный прогрев – приводит к разложению большинства лекарственных веществ.

Сухим жаром стерилизуют некоторые термостойкие порошки, масла, стеклянную тару (ампулыфлаконы и необходимую посуду), вспомогательные материалы.

Лучшими являются стерилизаторы с ламинарным потоком стерильного воздуха, нагретого до требуемой температуры, что улучшает создание равномерного температурного поля и устраняет загрязнения от обогреваемых стенок  камеры и из воздуха, попадаемого в момент выгрузки объекта.

Радиационная стерилизация. Лучистая энергия губительно действует на клетки живого организма, в том числе и на различные микроорганизмы. Принцип стерилизующего эффекта этих излучений основан на способности вызывать в живых клетках при определенных дозах поглощенной энергии такие изменения, которые неизбежно приводят их к гибели за счет нарушения метаболических процессов и коагуляции белка.

Источником ионизирующих γ-излучений служат долгоживущие изотопы 60Со27137Cs55, ускорители электронов прямого действия и линейные ускорители электронов. Для бактерицидного эффекта достаточно от 15 до 25 кГр, причем верхний предел необходим для инактивации споровых форм.

В настоящее время накоплен большой опыт применения этого метода, точно установлены типичные дозы излучения, необходимые для надежной стерилизации, разработано радиационное оборудование для высокопроизводительного процесса стерилизации, решены вопросы безопасности работы установок для обслуживающего персонала.

Этот метод по экономическим показателям превосходит асептическое изготовление растворов со стерильной фильтрацией, но несколько уступает тепловой стерилизации. Однако, в будущем может приблизиться к ней из-за неизбежного снижения относительной стоимости изотопов, которые являются побочным продуктом атомной энергетики.

Ультразвуковая стерилизация. Прохождение ультразвука (УЗ) в жидкой среде сопровождается чередующимися сжатиями, разрежениями и большими переменными ускорениями. В жидкости образуются разрывы, называемые кавитационными полостями. В момент сжатия эти полости захлопываются. Избыточное давление, создаваемое УЗ-волной, накладывается на постоянное гидростатическое и суммарно может составлять в пузырьках несколько атмосфер. В качестве «зародышей» кавитационных полостей могут быть пузырьки газа, пара в жидкости, твердые частицы и места неровностей твердой поверхности. Большие импульсные давления кавитаций приводят к разрушению целостности клеточной мембраны микроорганизмов, споровых образований и других частиц. Важно установить оптимальные параметры процесса стерилизации, так как высокие импульсные давления могут приводить к механическому разрушению ампул. Стерилизующая частота  звука должна быть в пределах 18-22 кГц.

И, хотя метод очень эффективен, он не нашел широкого применения из-за сложности аппаратурного оснащения и возможных сложных химических превращений компонентов растворов. Вопросы стабильности компонентов при УЗ-стерилизации имеют много общего с аналогичными проблемами радиационной стерилизации. Для повышения устойчивостилекарств при ультразвуковом воздействии необходимо подобрать такие условия стерилизующей обработки, которые обеспечивают снижение вводимой в систему энергии на тех частотахультразвука, которые одновременно со стерилизацией не приводят к разложению компонентов лекарственных препаратов.

Чаще метод применим при производстве эмульсий и суспензий с целью  лучшего диспергирования веществ в них и одновременно получения стерильных гетерогенных систем для парентерального применения.

Стерилизация токами высокой и сверхвысокой частоты. К настоящему времени нет единой точки зрения на механизм инактивации микроорганизмов при ВЧ- и СВЧ-облучении. Существует мнение об исключительно тепловом механизме действия токов высокой частоты на биологические объекты.  Принцип действия высокочастотного поля заключается в его активном воздействии на ориентацию молекул вещества. Изменение направленности поля вызывает изменение ориентации молекул и поглощение части энергии поля веществом. В результате происходит быстрый нагрев вещества во всех точках его массы.

Менее широко распространены представления о том, что, помимо тепловых процессов, на гибель микроорганизмов оказывает влияние специфическое действие ВЧ- и СВЧ-излучения.

С помощью СВЧ-энергии возможно стерилизовать в расфасованном виде готовую продукцию:  глазные мази, пасты в тубах, лекарственные средства в конвалютах, порошки, таблетки,пористые лиофилизированные массы, не содержащие гидрофильные жидкости. Стерилизация ампулированных растворов и жидких лекарственных форм, укупоренных герметически нежелательна, так как в замкнутой емкости возникает избыток давления паров испарившейся жидкости, взрывающий ее. В результате наступает разгерметизация в виде растрескивания стенок ампул или срыва укупорочного материала.

Метод также не нашел широкого применения из-за сложности аппаратурного оснащения и возможности неблагоприятного воздействия быстрого кратковременного нагреваинъекционного раствора.

Стерилизация ультрафиолетовым излучением. Из-за возможности образования ядовитых продуктов и возможности разложения биологически активных компонентов инъекционныхрастворов под действием УФ-излучения, метод не нашел своего применения для стерилизации препаратов для инъекций. Однако он широко используется для стерилизации порошков,воды для инъекций, вспомогательных материалов, воздушной среды производственных помещений, технологического оборудования и других объектов.

При стерилизации воздушной среды производственных помещений в качестве источников УФ-радиации используют специальные лампы БУВ (бактерицидная увиолевая), которые изготавливают в виде трубки из специального увиолевого стекла, способного пропускать УФ-лучи, с электродами из длинной вольфрамовой спирали, покрытой бария и стронция гидрокарбонатами. В трубке находится ртуть и аргон при давлении в несколько мм рт.ст. Источником УФ-лучей является разряд ртути, происходящий между электродами при подаче на них напряжения. Излучение лампы БУВ обладает большим бактерицидным действием, так как максимум излучения лампы близок к  максимуму бактерицидного действия (254 нм).

Количество и мощность бактерицидных ламп подбирается так, чтобы при прямом облучении на 1 м3 объема помещения приходилось не менее 2-2,5 Вт мощности излучателя. Промышленностью выпускаются лампы БУВ-15, БУВ-30, БУВ-60 и др. (цифра обозначает мощность в Ваттах), а также бактерицидные облучатели: настенный ОБН, состоящий из двух ламп БУВ-30; потолочный ОБП – из 4 ламп БУВ-30; передвижной маячного типа ОБПЕ – из 6 ламп БУВ-30. Облучатели используют только при отсутствии в помещении людей.

Для стерилизации воды применяют аппараты с погруженными и непогруженными источниками УФ-радиации. В аппаратах первого типа источник УФ-излучения (бактерицидная увиолевая лампа, покрытая кожухом из кварцевого стекла) помещается внутри водопровода и обтекается водой. Данный способ стерилизации больших объемов воды для инъекцийявляется наиболее экономичным.

В аппаратах с непогруженными лампами последние помещаются над поверхностью облучаемой воды. В связи с тем, что обычное стекло практически непроницаемо для ультрафиолетовых лучей, водопровод в местах облучения делают из кварцевого стекла, а это значительно повышает стоимость аппарата. В настоящее время разработана возможность замены кварцевого стекла полиэтиленовым, свободно пропускающим УФ-радиацию.

Как положительный фактор, следует отметить, что при стерилизации воды не происходит накопления пероксидных соединений и под действием УФ-излучения инактивируются некоторые пирогенные вещества, попавшие в воду.

Стерилизация ИК- и лазерным излучением. Электронная стерилизация. Эти перспективные виды стерилизации практически не находят сегодня применения, хотя возможности для этого имеются.

Облучение инъекционных водных систем инфракрасным (ИК) излучением в областях поглощения воды (l = 2,7 мкм) может быть эффективным средством ее нагрева и тем самым является по сути еще одним вариантом тепловой стерилизации. Наличие достаточно мощных источников ИК-излучения позволяет надеяться на возможность создания оборудования для высокопроизводительной технологии. Преимуществом этого метода перед традиционным автоклавированием может считаться возможность отказа от небезопасного в обслуживании и нетехнологичного перегретого пара.

Принципиально возможны  способы стерилизации с применением лазерного и электронного излучения, при этом можно достичь высокой эффективности стерилизации как путем интенсивного нагрева вследствие поглощения мощного излучения в воде, так и за счет селективного поглощения излучения макромолекулами микроорганизмов в многоквантовых процессах. Однако исчерпывающих исследований применительно к какой-либо конкретной системе, совокупность которых дала бы основание о создании хотя бы основ таких методовстерилизации, пока не проведено.

Методы контроля качества инъекционных растворов

Во время технологического процесса производства инъекционных растворов обязательно проводят промежуточный (постадийный) контроль качества, т.е. после каждой технологической стадии илли операции проводится бракераж ампулфлаконов, гибких контейнеров, не отвечающих определенным требованиям. Так, после растворения (изотонизации,стабилизации и т.д.) лекарственного вещества, контролируется качественный и количественный состав, рН раствора, плотность и др.; после операции наполнения – проверяется выборочно объем наполнения сосудов.

Определение норм наполнения. Фактический объем наполнения сосудов должен быть больше номинального, чтобы обеспечить нужную дозу при наполнении шприца. ГФ ХI издания устанавливает нормы налива и количества сосудов для контроля. В сосудах вместимостью до 50 мл наполнение проверяют калиброванным шприцем, в сосудах вместимостью 50 мл и более – калиброванным цилиндром при температуре 20±2°С. Таблица норм наполнения ампул растворами приведена выше.

Определение герметичности. Контроль качества запайки или укупорки проходят 100% сосудов и для определения герметичности используют 3 метода:

вакуумирование;

с помощью растворов индикаторов (для водных растворов) и воды или мыльного раствора (для масляных растворов);

по свечению газовой среды внутри сосуда под действием высокочастотного электрического поля.

Контроль на механические включения. Проводят путем просмотра сосудов на черном и белом фоне при освещении 60 Вт. На черном фоне проверяются прозрачность и наличие механических включений – стеклянная пыль, волокна фильтрующих материалов, не растворенные частицы лекарственного вещества и т.д.; на белом – цветность раствора, отсутствие механических включений черного цвета и целостность стеклянного изделия. Метод имеет недостатки: субъективизм контролируемого – острота зрения, опыт работы, усталость контролера и т.д. Допустимая ошибка метода составляет 30%.

Для более объективной оценки качества раствора по этому параметру были разработаны другие методы

·        изуально-оптические, основанные на использовании проекторов, увеличительных линз, поляризационного света и т.д.;

·        оптические, с автоматической регистрацией фотоэлементами поглощения или рассеивания проходящего света;

·        мембрано-микроскопические;

·        проточные методы (рис. 5.26).

Устройство установки для объективного контроля чистоты раствора в ампулах (схема)

Рис. 5.26. Устройство установки для объективного контроля чистоты раствора в ампулах (схема)

Количественное содержание лекарственных веществ, входящих в состав инъекционных растворов, определяют согласно указаниям ФС или другой нормативно-технической документации. Определение количественного состава проводится на каждой серии раствора.

Препараты, анализируемые биологическим методом, должны содержать активные ингредиенты в пределах, указанных в соответствующей НТД.

Определение стерильности растворов проводится путем посева и инкубации на специальных тест-средах образцов каждой серии продукции. При обнаружении роста микроорганизмов хотя бы в одной пробирке испытание повторяют на таком же количестве сосудов. И только при отсутствии роста при повторном посеве серия считается стерильной. Определению стерильности подвергают ампулы или флаконы каждой серии, одновременно подвергавшиеся стерилизации в одном стерилизующем аппарате.

Метод мембранного фильтрования при определении стерильности рекомендован при выраженном антимикробном действии лекарственного вещества и испытании растворов в больших объемах (более 100 мл). Отбирается 30 ампул, их делят на 3 группы по 10 штук, 20 используют для испытания на стерильность, 10 – для контроля полноты отмывания мембраны от лекарственного вещества. Для фильтрования применяют установку с мембраной диаметром 47 мм и размером пор 0,45±0,02 мкм. Фильтры стерилизуют при температуре 121±1°С 20 мин. Если испытывают порошок, его растворяют в воде для инъекций, фильтруют через стерильную мембрану, которую промывают от раствора 3-5 порциями растворителя по 100 мл, разрезают стерильными ножницами на 2 части, одну из них помещают в колбу с тиогликолевой средой, вторую – в среду Сабуро, 7 дней инкубируют при ежедневном просмотре. Все операции проводят в асептических условиях. При отсутствии роста на двух средах делают заключение о стерильности серии.

Определение пирогенности растворов проводят биологическим методом согласно ГФ ХI издания. За рубежом широко применяют лимулус-тест (лим-тест), основанный на образовании геля при взаимодействии бактериальных пирогенов с лизатом амебоцитов крови крабов Limulus polyphemus. В России разработан аналогичный метод, основанный на способности грамотрицательных микроорганизмов (основные продуценты пирогенных веществ) образовывать гель в 3% растворе калия гидроксида.

аркировка и упаковка

Нанесение надписи на ампулы производят на полуавтомате (рис. 5.27.). В бункер (7) загружают ампулы и барабаном подачи (8) направляют к офсетному цилиндру, на котором нанесены буквы и цифры надписи, вдавленные в виде углубления в 40-50 мкм. Формный цилиндр (5), вращаясь в ванне с быстро-высыхающей краской для глубокой печати; подает ее на офсетный цилиндр. Избыток краски с помощью ракеля (4) и регулирующего устройства снимается с поверхности офсетного цилиндра и остается в углублениях надписи. При контакте надпись наносится на ампулу, быстро высыхает и ампулы передаются на упаковку.

На автомате для упаковки ампул вместимостью 5 мл (модель 529) на полимерной пленке при нагревании формируются ячейки пуансонами и сжатым воздухом. Из питателя в ячейки попадают ампулы, а сверху накладывается фольга, термосклеивающаяся под действием пресса. Из общей ленты вырезаются готовые упаковки, они поступают в накопитель.

Устройство полуавтомата для маркировки ампул Устройство полуавтомата для маркировки ампул

Рис. 5.27. Устройство полуавтомата для маркировки ампул1 – корпус; 2 – регулирующее устройство; 3 – ванна; 4 – ракель; 5 – формный цилиндр; 6 – офсетный цилиндр; 7 – бункер; 8 – барабан подачи ампул; 9 – направляющие

На автомате для упаковки ампул вместимостью 1 мл (модель 570) происходит одновременно упаковки и маркировка. Пленка полихлорвинила размягчается нагревателем, ячейка формируется вакуумом при одновременной маркировке ампул. Они загружаются в ячейки, происходит термосклеивание с верхним покровным материалом. На упаковку горячим теснением наносится серия, срок годности препарата, готовая упаковка вырезается и попадает в накопители. Имеются автоматы для упаковки ампул в картонные коробки по 10 штук.

Приготовление инъекционных растворов, не подвергающихся тепловой стерилизации. Соблюдение всех условий асептики особенно важно при производстве лекарственных препаратов для инъекций, не подвергающихся тепловой стерилизации. Это относится к приготовлению инъекционных растворов из термолабильных веществ (барбамил, адреналина гидрохлорид, эуфиллина) или веществ, обладающих выраженной бактерицидной активностью (аминозин, дипразин, гексаметилентетрамин и др.).

Растворы гексаметилентетрамина при обычной температуре сравнительно устойчивы и обладают бактерицидным действием. При повышении же температуры происходит гидролиз гексаметилентетрамина с образованием формальдегида и аммиака, поэтому приготовление его 40% раствора проводят в асептических условиях (1 класс чистоты), без тепловой стерилизации. Лекарственное вещество, используемое для приготовления инъекционного раствора, должно быть более высокого качества, чем фармакопейный. Он не должен содержать аминов, солей аммония и параформа. Если нет сорта «для инъекций», то гексаметилентетрамин подвергают специальной очистке.

Для получения стабильных растворов эуфиллина пользуются сортом «для инъекций» с повышенным содержанием этилендиамина (18-22% вместо 14-18%). Воду для инъекций, предназначенную для приготовления растворов эуфиллина, подвергают освобождению от углекислоты. Эти меры служат для предотвращения гидролиза эуфиллина. 12-24% растворы эуфиллина для инъекций готовят в асептических условиях, без стабилизаторов, разливают и запаивают ампулы в токе азота (газовая защита).

Водные растворы аминазина (и дипразина) легко окисляются даже при кратковременном воздействии света с образованием красно-окрашенных продуктов разложения. Для получениястабильного препарата добавляют антиоксиданты и натрия хлорид – для изотонирования раствора. Изготавливают в строго асептических условиях без проведения тепловойстерилизации.

Важное значение в технологии приготовления инъекционных растворов, не подвергающихся тепловой стерилизации играет процесс фильтрования через бактериальные фильтры, при котором микроорганизмы удаляются из раствора, тем самым обеспечивается его стерильность и апирогенность. Стерильная

фильтрация достигается использованием глубинных и мембранных фильтров.

Лиофилизированные формы парентерального назначения. В настоящее время расширяется производство лиофилизированных препаратов.

Лиофилизация (сублимация) – один из эффективных путей повышения стабильности малоустойчивых и термолабильных лекарственных веществ, таких как антибиотики, ферменты,гормоны и другие биологически активные жидкости. Для некоторых препаратов это единственно возможный метод получения.

При высушивании методом сублимации создаются условия, при которых вещества претерпевают минимальные химические превращения, тем самым уменьшается количество дестабилизирующих факторов и повышается стабильность препарата.

Лиофилизированные препараты представляют собой пористые порошки, содержащие незначительное количество воды. Инъекционные растворы лиофилизированных веществ готовят непосредственно у постели больного с помощью стерильного растворителя, прилагаемого в упаковке.

Приготовление инъекционных растворов из веществ, требующих специальной очистки. В случае отсутствия сорта «для инъекций» исходные вещества подевргают специальной очистке от недопустимых примесей (химических, механических и пирогенных веществ).

Раствор кальция глюконата 10% для инъекций (Solutio Calcii gluconatis 10% pro injectionibus). Кальция глюконат медленно растворим в 50 частях воды и растворим в 5 частях кипящей воды, таким образом, 10% раствор пересыщен. В отличие от многих солей кальция глюконат при нагревании улучшает растворимость. Поэтому растворение проводят при нагревании в течение 3 ч.

В кальция глюконате содержится примесь кальция оксалата как побочный продукт при получении вещества, который во время растворения образует комплекс с кальция глюконатом, а при стерилизации и хранении выпадает в осадок. Его удаляют добавлением кристалликов кальция оксалата в качестве затравки и для повышения концентрации одноименных ионов. При охлаждении образуется осадок, поэтому раствор фильтруют в горячем состоянии. Его анализируют, проверяют значение рН, расфасовывают и стерилизуют паром под давлением при температуре 110°С в течение 1 ч. При более высоких температурах происходит карамелизация. Перед введением раствора больному необходимо убедиться, что шприц и игла не содержат этанол, так как в этом случае в момент введения препарата выпадает осадок. Выпускают в ампулах по 10 мл.

Раствор глюкозы 5, 10, 25 и 40% для инъекций (Solutio Glucosi 5, 10, 25, 40% pro injectionibus). Исходная глюкоза подвергается анализу на прозрачность и цветность ее растворов, кислотность, наличие хлоридов, сульфатов, кальция, бария. Тяжелых металлов допускается не более 0,0005 % при отсутствии мышьяка. Раствор получают с учетом содержания кристаллизационной воды в глюкозе двойной очисткой активированным осветляющим углем марки «А». Гидратную глюкозу растворяют при температуре 50-60 °С и добавляют уголь активированный, обработанный кислотой хлороводородной. Для удаления примесей и активирования перемешивают 10 мин и еще добавляют уголь активированный, перемешивают, фильтруют через бельтинг и бязь. Затем раствор доводят до кипения, охлаждают до температуры 60°С, добавляют уголь активированный, перемешивают 10 мин и фильтруют. К раствору добавляют стабилизатор Вейбеля (натрия хлорид и 0,1 н. раствор кислоты хлороводородной), перемешивают, анализируют и фильтруют через фильтр ХНИХФИ, ампулируют истерилизуют в паровом стерилизаторе при температуре 100-102°С в течение 1 ч. В растворе проверяется подлинность, цветность, значение рН среды (должно быть 3,0-4,0). 5% раствор при введении 10 мл на 1 кг массы животного должен быть апирогенным. Проверяется его стерильность.

Раствор желатина медицинского 10% для инъекций (Sotutio Gelatinae medicinalis 10% pro injectionibus) получают из желатина медицинского, проверяют силу и крепость 10% геля, относительную вязкость 14,82 % раствора, проводят бактериологические исследования. Желатин для инъекции в растворе 1:10 не должен быть мутнее эталона №3 и выдержать испытание на пирогенность при введении 10 мл его на 1 кг массы животного.

Желатин в виде мелких пластинок ставят на 20 мин для набухания в воде, переносят в реактор и заливают кипящей водой. После полного растворения значение рН раствора доводят щелочью до 9,0–9,7, а концентрацию вещества – до 10%, устанавливают температуру 80°С и выдерживают 40 мин для частичного разрушения примесей белкового характера ипирогенных веществ. Раствор охлаждают до 60°С, значение рН доводят до 6,8–7,0, добавляют 3 белка куриных яиц на 1 л, уголь активированный, натрия хлорид (для стабилизациижелатина) и с помощью миксера интенсивно перемешивают. Температуру повышают до 105°С и выдерживают 15–20 мин. Белковые примеси коагулируют и адсорбируют углем. Раствор охлаждают до 90°С, фильтруют на друк-фильтре через 4 слоя бязи и слой фильтровальной бумаги, затем через фильтр ХНИХФИ с толщиной ровницы 3-4 см, ампулируют по 10 и 25 мл.Стерилизуют при температуре 105°С 30 мин, медленно повышают ее до 120°С и выдерживают 15 мин. После стерилизации ампулы помещают в термостат на 7 сут при 38-40°С. Раствор не должен мутнеть. Проводится анализ раствора по следующим показателям: подлинность, относительная вязкость, температура плавления, значение рН, прозрачность и цветность. Препарат испытывается на пирогенность и стерильность. Технология раствора преследует цель – максимально удалить пирогенные вещества и белки с антигенными свойствами и одновременно сохранить способность желатинирования (гелеобразования). Перед введением раствор подогревается до 37°С.

Специальной очистке подвергаются инъекционные растворы магния сульфата 20 или 25%, кальция хлорида 10%, гексаметилентетрамина 40%, эуфиллина 24%, натрия кофеин-бензоата 10%, натрия цитрата, натрия гидрокарбоната и др.