ЖИЗНЕННЫЙ ЦИКЛ КЛЕТКИ. ДЕЛЕНИЕ КЛЕТОК. МОРФОЛОГИЯ ХРОМОСОМ. КАРИОТИП ЧЕЛОВЕКА. ХАРАКТЕРИСТИКА НУКЛЕИНОВЫХ КИСЛОТ.
Хромосомы, (гр. chroma — цвет, soma — тело) могут находиться в двух структурно-функциональных состояниях: в конденсированном (спирализованном) и деконденсированном (гранулы хроматина, так как хромосомы частично или полностью деконденсируются. Это их рабочее состояние. Чем более диффузен хроматин, тем интенсивнее в нем синтетические процессы. Ко времени деления клетки происходит конденсация (спирализация) хроматина. В неделящейся клетке хромосомы не видны, обнаруживаются лишь хорошо видны (Шевченко В.А. та ін., 2004)
Хроматин представляет собой комплекс ДНК и белков. В состав хроматина входят два типа белков: гистоновые и негистоновые белки. Мельчайшими структурными компонентами хромосом являются нуклео- протеидные фибриллы, они видимы лишь в электронный микроскоп. Хромосомные нуклеопротеиды состоят из ДНК и белков, преимущественно гистонов. Молекулы гистонов образуют группы — нуклеосомы. Каждая нуклеосома состоит из 8 белковых молекул. Размер нуклеосомы около 8 нм. С каждой нуклеосомой связан участок ДНК, спирально оплетающий ее снаружи. В таком участке ДНК находится 140 нуклеотидов длиной около 50 нм, но благодаря спирализации длина ее укорачивается примерно в 5 раз. Существует представление, что хромосома состоит из одной гигантской фибриллы, образующей мелкие петли, спирали и разнообразные изгибы. По другим представлениям фибриллы ДНК попарно скручиваются, образуя хромонемы, которые входять в комплексы более высокого порядка — также спирально закрученные полухроматиды. Пара полухроматид составляет хроматиду, а пара хроматид — хромосому.
Организация хроматина
Каким
бы ни было тонкое строение хромосомы, от степени скручивания нитчатых структур
зависит ее длина. На различных участках одной и той же хромосомы спирализация,
компактность ее основных элементов неоди-
накова,
с
этим
связана
различная интенсивность окраски отдельных участ-
ков хромосомы. Участки
хромосомы, интенсивно воспринимающие красители, получили название гетерохроматических
(состоящих из гетерохроматина), они даже в период между делениями клетки
остаются компактными, видимыми в световой микроскоп. Слабо окрашивающиеся участки,
деконденсирующиеся в периоды между делениями клетки и становящиеся
невидимыми, получили
название эухроматических (состоящих из эухроматина).
Предполагается, что еухроматин содержит в себе
гены, а гетерохроматин выполняет по преимуществу структурную функцию. Он
находится в интенсивно спирализованном состоянии и
занимает одни и те же участки в го-
мологичных хромосомах, в частности составляет участки, прилегающие к
центромере и находящиеся на концах хромосом.
Потеря участков гетеро-
хроматина может не отражаться на жизнедеятельности
клетки. Выделяют еще факультативный
гетеро хроматин (Гуттман Б. та ін., 2004). Он
возникает при спирализации и инактивации двух гомологичных хромосом, так образуется тельце
Бара (х — половой хроматин). Его образует одна из
двух хромосом у женских особей
млекопитающих и человека.
Строение хромосомы
Хромосомы во время деления клетки, в период метафазы имеют форму нитей, палочек и т. д. Строение одной и той же хромосомы на различных участках неоднородно. В хромосомах различают первичную перетяжку, делящую хромосому на два плеча. Первичная перетяжка (центромера) — наименее спирализованная часть хромосомы. На ней располагается кинетохор (гр. kinesis — движение, phoros — несущий), к которому при делении клетки прикрепляются нити веретена. Место расположения первичной перетяжки у каждой пары хромосом постоянно, оно обусловливает и форму. В зависимости от места расположения центромеры различают три типа хромосом: метацентрические, субметацентрические и акроцентрические. Метацентрические хромосомы имеют равной или почти равной величины плечи, у субметацентрических плечи неравной величины, акроцентрические имеют палочковидную форму с очень коротким, почти незаметным вторым плечом. Могут возникнуть и телоцентрические хромосомы в результате отрыва одного плеча, у них остается только одно плечо и центромера находится на конце хромосомы. В нормальном кариотипе такие хромосомы не встречаются (Жимулев И. Ф., 1998)
Типы хромосом
I Телоцентрическая
II Акроцентрическая
III Субметацентрическая
IV Метацентрическая
Концы плеч хромосом получили название теломеров, это специализированные участки, которые препятствуют соединению хромосом между собой или с их фрагментами. Лишенный теломеры конец хромосомы оказывается «ненасыщенным», «липким» и легко присоединяет фрагменты хромосом или словами, число хромосом и характерные особенности их строения — видовой признак.
Хромосомы разных видов растений и животных, изображенные в одном масштабе: 1—2 амеба; 3—4 — диатомовые водоросли; 5—5, 18—19 — зеленые водоросли; 9 — мухомор; 10 — липа; И— 12 — дрозофила; 13 — семга; 14 — скерда (семейство сложноцветные); 15 — растение из семейства ароидных; 16 — бабочка-хохлатка 17 — насекомое из семейства саранчевых; 20— клоп-водомерка; 21— цветочный клоп; 22 земноводное амбистома; 23 — алоэ (семейство лилейные)
В норме теломеры препятствуют таким процессам и сохраняют хромосому как дискретную индивидуальную единицу, т. е. обеспечивают ее индивидуальность. Некоторые хромосомы имеют глубокие вторичные перетяжки, отделяющие участки хромосом, называемые спутниками. Такие хромосомы в ядрах клеток человека могут сближаться друг с другом, вступать в ассоциации, а тонкие нити, соединяющие спутники с плечами хромосом, при этом способствуют формированию ядрышек. Именно эти участки в хромосомах человека являются ядрышковыми организаторами. У человека вторичные перетяжки имеются на длинном плече 1, 9 и 16 хромосом и на концевых участках коротких плеч 13—15 и 21—22 хромосом (Слюсарев О.О. та ін., 1987).
В плечах хромосом видны более толстые и интенсивнее окрашенные участки — хромомеры, чередующиеся с межхромомерными нитями. Вследствие этого хромосома может напоминать нитку неравномерно нанизанных бус. Другими словами, число хромосом и характерные особенности их строения — видовой признак. Эта особенность известна как правило постоянства числа хромосом. Так, в ядрах всех клеток лошадиной аскариды (Paraascaris megaloce-phala univalenus) находятся по 2 хромосомы, у мухи дрозофилы (Drosophila melanogaster) — по 8, у человека — по 46. Число хромосом не зависит от высоты организации и не всегда указывает на филогенетическое родство: одно и то же число может встречаться у очень далеких друг от друга форм и сильно разниться у близких видов. Однако очень важно, что у всех организмов, относящихся к одному виду, число хромосом в ядрах всех клеток, как правило, постоянно. Следует обратить внимание на то, что во всех приведенных выше примерах число хромосом четное. Это связано с тем, что хромосомы составляют пары (правило парности хромосом). У лошадиной аскариды одна пара хромосом, у дрозофилы — 4, у человека — 23. Хромосомы, которые относятся к одной паре, называются гомологичными. Гомологичные хромосомы одинаковы по величине и форме, у них совпадают расположение центромер, порядок расположения хромомер и межхромомерных нитей, а также другие детали строения, в частности, расположение гетерохроматиновых участков. Негомологичные хромосомы всегда имеют отличия. Каждая пара хромосом характеризуется своими особенностями. В этом выражается правило индивидуальности хромосом.
В последовательных генерациях клеток сохраняется постоянное число хромосом и их индивидуальность вследствие того, что хромосомы обладают способностью к авторепродукции при делении клетки. Таким образом, не только «каждая клетка от клетки», но и «каждая хромосома от хромосомы». В этом выражается правило непрерывности хромосом (Жимулев И. Ф., 1998)
В ядрах клеток тела (т. е. соматических клетках) содержится полный двойной набор хромосом. В нем каждая хромосома имеет партнера. Такой набор называется диплоидным и обозначается 2п. В ядрах половых клеток в отличие от соматических из каждой пары гомологичных хромосом присутствует лишь одна хромосома. Так, в ядрах половых клеток лошадиной аскариды всего одна хромосома, дрозофилы — 4, человека — 23. Все они различны, негомологичны. Такой одинарный набор хромосом называется гаплоидным, и обозначается п. При оплодотворении происходит слияние половых клеток, каждая из которых вносит в зиготу гаплоидный набор хромосом, и восстанавливается диплоидный набор: п + п = 2n.
При сравнении хромосомных наборов из соматических клеток мужских и женских особей, принадлежащих одному виду, обнаруживалось отличие в одной паре хромосом. Эта пара получила название половых хромосом, или гетерохромосом. Все остальные пары хромосом, одинаковые у обоих полов, имеют общее название аутосом. Так, у дрозофилы 3 пары аутосом и одна пара гетерохромосом.
Диплоидный набор хромосом клетки, характеризующийся их числом, величиной и формой, называется кариотипом. Этот термин введен в 1924 г. советским цитологом Г. А. Левитским (1878—1941). Нормальный кариотип человека включает 46 хромосом, или 23 пары; из них 22 пары аутосом и одна пара — половых хромосом (гетерохромосом). Для изучения кариотипа человека обычно используют клетки костного мозга и культуры фибробластов или лейкоцитов периферической крови, так как эти клетки легче всего получить. При приготовлении препаратов хромосом к культуре клеток добавляют колхицин, останавливающий деление клеток на стадии метафазы. Затем клетки обрабатывают гипотоническим раствором, отделяющим хромосомы друг от друга, после чего их фиксируют и окрашивают. Благодаря такой обработке каждая хромосома четко видна в световом микроскопе. Длина хромосом колеблется от 2,3 до 11 мкм. В связи с тем, что на этой стадии хромосомы состоят из двух хроматид, концы которых отходят друг от друга, хромосомы имеют .Х-образную форму. Для того чтобы легче было разобраться в сложном комплексе хромосом, составляющих кариотип, их располагают в виде идиограммы (гр. idios — своеобразный, gramme— запись). Составление идиограмм, как и сам термин, предложены советским цитологом С. Г. Навашиным (1857—1930). В идио-грамме по денверской классификации 1960 г. хромосомы располагаются попарно в порядке убывающей величины. Исключение делается для половых хромосом, которые выделяются особо. Наиболее крупной паре хромосом присвоен № 1, следующей — № 2 и т. д. Самая маленькая пара хромосом человека №22. Как видно на идио-грамме, пару половых хромосом женщины составляют две одинаковые крупные хромосомы, названные Х-хромо-сомами. У мужчин одна Х-хромосома такая же, как у женщин, а другая — гораздо меньшая, У-хромосома, на идиограмме видно, что 1,3 и Х-хромо-сомы — метацентрические; 2,6—12 и 16—20 — субметацентрические, а 4,5, 13—15, 21, 22 и F-хромосомы акро-центрические и субакроцентрические. Идентификация хромосом только по величине и форме встречает большие затруднения: ряд хромосом имеет сходные размеры. Однако в последнее время разработаны новые методики для анализа хромосом: использование флюоресцентных красителей, окрашивание хромосом после специальной обработки краской Гимзы (названной так по имени автора) и применение других красителей. Этими методами установлена четкая дифференцировка хромосом человека по их длине на красящиеся специальными методами и не красящиеся полосы. Рисунок этих полос строго специфичен, индивидуален для каждой пары хромосом. Умение точно дифференцировать хромосомы имеет большое значение для медицинской генетики, так как позволяет точно установить характер нарушений в кариотипе пациента (Слюсарев О.О. та ін., 1987).
Постоянство числа, индивидуальность и сложность строения, авторепродукция и непрерывность в последовательных генерациях клеток говорят о большой биологической роли хромосом. Действительно хромосомы являются носителями наследственной информации.
Выяснено, что наследственная информация дискретна, ее составляют многочисленные гены, расположенные вдоль хромосом в линейном порядке. Каждый ген занимает постоянное, определенное место (локус) в определенной хромосоме.
Гомологичные хромосомы имеют один и тот же набор генетических локусов, поэтому они взаимозаменяемы. Него мологичные хромосомы имеют различные наборы генетических локусов, по этому взаимонезаменяемы. Генетическая информация, необходимая для развития организма, содержится только в полном комплекте всех негомологичных хромосом (т. е. в полном гаплоидном наборе хромосом) (Гуттман Б. та ін., 2004)
Жизненный цикл клетки. Процесс деления и интерфаза тесно взаимосвязаны, их совокупность составляет жизненный цикл клетки. Его продолжительность в клетках растений и животных составляет в среднем 10-20 часов.
В химически активной среде пищевого тракта клетки эпителия кишечника быстро изнашиваются и потому непрерывно делятся — дважды в сутки, клетки роговицы глаза приступают к делению один раз в трое суток, а клетки эпителия кожи — раз в месяц. На процесс деления клетка тратит в среднем от 1 до 3 часов в зависимости от внешних условий (освещения, температуры и пр.).
В печени животных находятся так называемые покоящиеся клетки, которые делятся только в кризисных ситуациях. Например, при удалении части печени эти клетки начинают интенсивно размножаться, быстро восполняя число, необходимое для нормальной жизнедеятельности органа.
Некоторые высокоспециализированные клетки (нейроны, часть лейкоцитов) у взрослых существ никогда не делятся. Их клеточный цикл заканчивается апоптозом (от греч. apoptosis падение) — запрограммированной гибелью. В некоторых случаях апоптозу подвергаются и другие клетки организма. Сначала клетка получает определенный химический сигнал на осуществление самоуничтожения. Затем в ее комплексе Гольджи и лизосомах активируются ферменты, разрушающие (лизирующие) основные компоненты цитоплазмы и ядра. После этого клетка распадается на мембранные пузырьки, которые поглощаются клетками-фагоцитами, перерабатывающими посторонние компоненты. Воспалительного процесса при апоптозе не возникает (Шевченко В.А. та ін., 2004)
Посредством апоптоза головастики утрачивают свой хвост, а у личинок насекомых в ходе их превращения во взрослый организм исчезают лишние ткани. Пальцы человеческого эмбриона соединены тканевыми перепонками. В процессе эмбриогенеза перепонки запрограммировано уничтожаются.
Апоптоз помогает организму избавляться от клеток, в которых накопились генетические повреждения, а также от больных и состарившихся клеток. Многие вирусы, проникая в клетку, прежде всего стараются нарушить ее механизм апоптоза, чтобы не быть уничтоженными вместе с больной клеткой.
При нарушении апоптоза развиваются такие тяжелые заболевания как системная красная волчанка, болезнь Паркинсона, прогрессируют вирусные инфекции.
Апоптоз может быть спровоцирован внешними факторами: химическим воздействием или облучением. На этом основано действие некоторых препаратов и специальных излучателей, вызывающих апоптоз раковых клеток. Спровоцированный апоптоз иногда приводит к опасным последствиям. Так, продолжительное нарушение кровообращения сердечной мышцы приводит к разрушению лишь небольшой части ее клеток, но их гибель вызывает апоптоз многих соседних клеток и как следствие — обширный инфаркт миокарда.
Кроме апоптоза есть и другие механизмы, ограничивающие жизнедеятельность клеток. Так, в результате каждого акта деления концевые участки ДНК хромосом укорачиваются. Когда потеря генетического материала становится критической, клетка перестает делиться. Некоторые группы клеток многоклеточных существ, как и одноклеточные организмы, обладают способностью давать неограниченное количество поколений. Это так называемые стволовые клетки. У человека стволовыми являются клетки красного костного мозга, из которых формируются эритроциты, лейкоциты и тромбоциты. В стволовых клетках, как и в одноклеточных организмах, синтезируется особый фермент, удлиняющий концевые участки ДНК, — теломераза (Слюсарев О.О. та ін., 1987).
Инфузории, в отличие от амеб и бактерий, не могут делиться бесконечно долго. После определенного, достаточно большого количества делений у них наблюдаются признаки старения (дегенерации). Тогда две состарившиеся инфузории "слипаются" и конъюгируют — обмениваются частью ядерных ДНК, т.е. генетической информацией. После конъюгации у каждой инфузории восстанавливается жизнеспособность: повышается интенсивность обмена веществ, увеличивается темп делений и т.д.
Деление клеток составляет основу процессов размножения и развития организмов. Деление происходит в два этапа. Сначала разделяется ядро, а затем происходит цитокинез — разделение самой клетки.
Интерфаза - фаза в жизненном цикле между двумя делениями клетки. Она характеризуется активными процессами обмена веществ, синтезом белка, РНК, накоплением питательных веществ клеткой, ростом и увеличением объема. В середине интерфазы происходит удвоение ДНК (репликация). В результате каждая хромосома содержит 2 молекулы ДНК и состоит из двух сестринских хроматид, которые сцеплены центромерой и образуют одну хромосому. Клетка подготавливается к делению, удваиваются все ее органоиды. Продолжительность интерфазы зависит от типа клеток и в среднем составляет 4/5 от общего времени жизненного цикла клетки.
Основной способ деления ядер эукариотических клеток называют митозом. Митоз - процесс образования двух дочерних клеток, идентичных исходной материнской клетке. Он обеспечивает возобновление клеток в процессе их старения. Митоз состоит из четырех последовательных фаз, обеспечивающих равномерное распределение генетической информации и органоидов между двумя дочерними клетками. Различают четыре фазы митоза: профаза, метафаза, анафаза и телофаза (Жимулев И. Ф., 1998)
Профаза. В профазе заканчиваются приготовления к делению. Хромосомы сильно утолщаются и становятся видимыми в световой микроскоп. Теперь они представляют собой две спирализованные ДНК (хроматиды), образовавшиеся в процессе удвоения и соединенные центромерами друг с другом. Хромосомы максимально спирализуются, становятся хорошо заметными. Каждая хромосома состоит из двух сестринских хроматид.
Считывание информации с ДНК прекращается, синтез РНК заканчивается. Субъединицы рибосом выходят в цитоплазму, и ядрышки исчезают. Микротрубочки цитоскелета распадаются. Из составлявших их белков на центриолях начинает формироваться веретено деления. Центриоли расходятся к противоположным полюсам клетки. Внешние микротрубочки прикрепляются к наружной мембране и фиксируют положение центриолей. Наконец ядерная оболочка распадается на фрагменты, и хромосомы оказываются в цитоплазме. Края фрагментов оболочки смыкаются, образуя мелкие пузырьки-вакуоли, которые сливаются с мембранами эндоплазматической сети.
Метафаза. Эта стадия деления характеризуется перегруппировкой хромосом в цитоплазме. Когда до хромосомы дорастают микротрубочки от ближайшей центриоли, она начинает перемещаться к центру клетки по мере роста микротрубочки, пока не соединится своей центромерной областью с микротрубочками от другой центриоли. Контакты хромосом с микротрубочками происходят случайным образом, в микроскоп видно, как хромосомы энергично вращаются и движутся туда-сюда, пока не оказываются "пойманными" микротрубочками, идущими с двух противоположных сторон. К концу метафазы все хромосомы собираются в экваториальной зоне клетки. Они максимально компактны и хорошо видны. По метафазным хромосомам определяют количество и структуру хромосом организма — его кариотип.
Центромерные области хромосом разъединяются, и они становятся самостоятельными. Каждая из них оказывается присоединенной центромерой к своему полюсу деления.
Анафаза. Наступившая стадия характеризуется расхождением хроматид каждой хромосомы к противоположным полюсам. В центромерных участках расположены сократительные белки. Перемещение происходит в результате их активной работы за счет энергии АТФ (для перемещения каждой хромосомы расщепляется 20 молекул). Плечи хромосом пассивно следуют за центромерой. Освобождающиеся участки микротрубочек сразу же разрушаются. Создается впечатление, что не хромосомы движутся по микротрубочкам, а сами микротрубочки, сокращаясь, подтягивают хромосомы. С достижением хромосомами полюсов деления анафаза заканчивается. Очевидно, что при отсутствии веретена деления размножение клеток не происходит. Химическое воздействие, разрушающее микротрубочки, — один из способов подавления роста опухолей.
Телофаза. На этом последнем этапе митоза путем слияния пузырьков эндоплазматической сети формируется новая ядерная оболочка. Хромосомы деспирализуются в длинные тонкие нити, на которых образуются ядрышки. Веретено деления разрушается. Из составлявших его белков с центриолей начинают разрастаться микротрубочки нового цитоскелета.
Цитокинез. Процесс деления ядра называется кариокинезом, а деления содержимого клетки - цитокинезом. Весь процесс деления делится от нескольких минут до 3 часов, в зависимости от типа клеток. Стадия деления клетки в несколько раз по времени короче ее интерфазы. Окончательное разделение надвое в клетках животных осуществляется перетяжкой. В растительных клетках из середины к краям разрастается мембрана, на которой затем появляется плотная клеточная стенка. Органоиды (митохондрии, рибосомы, комплекс Гольджи и др.) распределяются между дочерними клетками примерно в равных количествах.
При митозе некоторых клеток сердечной мышцы и печени перетяжка не образуется, поэтому часть клеток этих органов — двуядерные (Слюсарев О.О. та ін., 1987).
Обратим внимание на то, что все процессы митоза определяются преобразованиями хромосом. Удвоившись в интерфазе, хромосомы начинают спирализоваться и выходят в профазе в цитоплазму. В метафазе они собираются в экваториальной зоне и разъединяются, чтобы в анафазе разойтись к разным полюсам. На заключительном этапе телофазы хромосомы принимают исходный вид тонких деспирализованных нитей, характерных для интерфазы.
Посредством митотического деления дочерние клетки получают набор хромосом материнской клетки, так что клетки всего организма имеют одни и те же хромосомы.
Клетки, образующие все ткани и органы тела, называют соматическими. Специализированные половые клетки участвуют в воспроизведении. Соматические клетки содержат диплоидный (двойной) набор хромосом. В этом наборе каждый ген закодирован в двух сходных (гомологичных) хромосомах. Набор половых клеток — гаплоидный (одинарный). Хромосомы половых клеток не имеют гомологов, каждый ген в их наборе — единственный. Число хромосом гаплоидного и диплоидного наборов видоспецифично, то есть постоянно для каждого вида организмов.
Хромосомный набор соматических клеток человека включает 46 хромосом: 22 гомологичные пары и две непарные хромосомы, определяющие пол. В половых клетках человека содержится только 23 одиночных хромосомы. У курицы диплоидный набор включает 78 хромосом, а гаплоидный — 39. Примеры других наборов приведены в таблице (Шевченко В.А. та ін., 2004).
Анализ хромосомных наборов показывает, что сложность и совершенство различных организмов не определяется лишь количеством хромосом.
Биологическое значение митоза. Помимо наращивания тела, митоз имеет и другое, более важное предназначение. В процессе митоза генетический материал воспроизводится. Благодаря этому возможно сохранение устройства и функционирования органов и тканей в бесчисленных поколениях. Особенно важна идентичность генетического материала для многоклеточных организмов, клетки которых находятся в тесном и слаженном взаимодействии. Точное воспроизведение и передача генетической информации составляет основное биологическое значение митоза.
Митотическое деление обеспечивает важнейшие процессы жизнедеятельности: эмбриональное развитие и рост, регенерацию органов и тканей после повреждения, поддержание устройства и функционирования организма при постоянной утрате им рабочих клеток. Клетки кожи сшелушиваются, клетки эпителия кишечника разрушаются активной средой, эритроциты интенсивно функционируют и быстро погибают, полностью они заменяются в организме каждые четыре месяца (2,5 млн. клеток в секунду).
Период жизнедеятельности клетки, в котором происходят все обменные процессы и деление, называется жизненным циклом клетки. Это время жизни клетки от одного деления до другого. Клеточный цикл состоит из интерфазы и деления (Слюсарев О.О. та ін., 1987).
Деление клетки. Рост организма осуществляется за счет деления его клеток. Способность к делению - важнейшее свойство клеточной жизнедеятельности. Делясь, клетка удваивает все свои структурные компоненты, и в результате возникают две новые клетки. Наиболее распространенным способом деления клетки является митоз - непрямое деление клетки.
Иногда встречается и другой вид деления клетки - амитоз. Амитоз - прямое деление ядра, без образования хромосом и веретена деления. При этом наследственная информация распределяется неравномерно. Амитоз встречается у некоторых простейших, в клетках специализированных тканей (хрящи), в раковых клетках.
Мейоз
Развитие организма начинается с единственной клетки — зиготы, которая образуется от слияния специализированных половых клеток — мужской и женской гамет. В процессе слияния их ядра объединяются, и в зиготе оказывается вдвое больше хромосом, чем в каждой гамете. Если бы половые клетки были диплоидными, то в каждом следующем поколении количество хромосом в клетках организма удваивалось бы. Поэтому половые клетки несут вдвое меньший набор хромосом. Таким образом, соматические (телесные) клетки организмов имеют диплоидный (двойной) набор хромосом и поддерживают его видовое постоянство посредством митотического деления, а половые — гаплоидный, который восстанавливается до диплоидного в процессе оплодотворения. Рассмотрим основные фазы мейоза.
Мейоз
Созревание гамет включает два последовательных деления: первое — типичный мейоз, второе сходно с митотическим. Оба деления подобно митозу проходят четыре стадии: профазу, метафазу, анафазу и телофазу. Перед первым делением, как и перед митозом, происходит репликация ДНК с удвоением хромосом, каждая хромосома вступает в процесс деления сдвоенной.
Первое мейотическое деление
В профазе гомологичные хромосомы подходят очень близко друг к другу. Особыми белковыми нитями с утолщениями на концах они как бы пристегиваются друг к другу по типу застежки "молния". В таком состоянии, называемом конъюгацией, они находятся довольно долго (у человека около недели). Пристегивание происходит в тех местах ДНК, где еще не завершилась репликация и двойная спираль несколько раскручена.
Конъюгирующие хромосомы плотно прилегают друг к другу и могут обмениваться участками. Такой обмен называют перекрестом, или кроссинговером (англ. crossing over). После перекреста каждая хромосома сочетает гены, находившиеся до перекреста в разных гомологичных хромосомах.
В конце профазы к центромерам хромосом присоединяется веретено деления, и они начинают расходиться центромерными участками к разным полюсам деления, оставаясь сцепленными в местах кроссинговера.
В отличие от митоза, в метафазе мейоза удвоенные хромосомы не разделяются в центромерах, каждая пара взаимодействует с одним веретеном деления. Если в метафазе митоза к разным полюсам расходятся отдельные хроматиды, то в метафазе первого деления мейоза — конъюгировавшие хромосомы. В телофазе на непродолжительный период образуется ядерная оболочка.
Второе мейотическое деление. Поскольку хромосомы остались соединенными центромерами, то есть удвоенными, репликация ДНК перед вторым делением не происходит. Второе мейотическое деление осуществляется аналогично митозу. В результате из двух диплоидных клеток образуются четыре гаплоидные половые клетки. Из-за отсутствия конъюгации второе деление происходит значительно быстрее.
Соматические клетки содержат по две гомологичных хромосомы (одинаковых по форме и размеру, несущих одинаковые группы генов): одну — от отцовского организма, другую — от материнского. В половых клетках из двух гомологичных хромосом остается какая-то одна, их хромосомы не имеют гомологов — они одиночные, поэтому и набор — гаплоидный. Если при митозе количество генетической информации сохраняется, то при мейозе — сокращается вдвое.
В формировании половых клеток с уменьшенным вдвое, гаплоидным, набором хромосом состоит биологическая сущность мейоза.
Хромосомные наборы созревших половых клеток вследствие случайности расхождения пар к полюсам в метафазе первого деления содержат самые разнообразные комбинации родительских хромосом. Гамета может иметь, например, 5 отцовских и 18 материнских хромосом (всего у человека 23 хромосомы), 20 отцовских и 3 материнских и т.д. Каждая из 23 хромосом отлична от другой и может оказаться одной из двух гомологичных родительских — всего 223 (8,6 млн.) вариантов гамет. В дочернем организме количество возможных комбинаций хромосом составляет 423, это число в тысячи раз превышает население земного шара. Кроссинговер, объединяя в хромосомах гены родительских особей, на многие порядки увеличивает разнообразие признаков в потомстве. Такое разнообразие возможных генотипов делает каждое существо неповторимым, генетически уникальным.
В период мейоза генетический материал очень уязвим. Если, например, в результате облучения или воздействия химических соединений произойдет разрыв ДНК в момент расхождения хромосом, то часть наследственного материала утратится. Потеря участка ДНК в соматической клетке во время митоза приведет к нарушению только в ее дочерних клетках, составляющих небольшую часть существа. Если же утратится часть хроматиды созревающей половой клетки, то пострадает потомство: его наследственная информация будет неполной, какие-то процессы жизнедеятельности не смогут осуществляться. При этом большей опасности подвергается женский эмбрион, поскольку весь запас женских гамет (у человека около 300) формируется в эмбриональный период сразу на всю жизнь, мужские же гаметы образуются практически весь период жизнедеятельности. Незначительные дозы радиации, совсем не опасные для самого организма, могут нарушить хромосомы яйцеклеток эмбриона и привести к генетическим аномалиям в следующем поколении (Шевченко В.А. та ін., 2004)
Партеногенез. Некоторые животные (дафнии, скальные ящерицы, часть рыб, тли) и растения (одуванчики) в определенные периоды способны размножаться без слияния мужской и женской гамет. Развитие происходит из неоплодотворенной яйцеклетки. Диплоидность, например, у скальных ящериц достигается слиянием яйцеклетки с полярным тельцем. При этом, как правило, образуются особи только женского пола. Эта разновидность полового размножения называется партеногенезом.
Пчелиная матка откладывает два вида яиц: оплодотворенные диплоидные и неоплодотворенные гаплоидные. Из неоплодотворенных яиц развиваются трутни, а из оплодотворенных — самки, из которых при хорошем кормлении вырастают матки, а при создаваемом недостатке питания получаются рабочие пчелы.
Иногда партеногенез можно вызвать искусственно, воздействуя светом, кислотами, высокой температурой и другими агентами. Если, например, уколоть иголочкой неоплодотворенную яйцеклетку лягушки, то эта яйцеклетка может, не оплодотворившись, начать деление и развиться во взрослую особь. Самопроизвольно партеногенез у лягушек не происходит. Деление яйцеклетки некоторых рыб может начаться после поверхностного контакта со сперматозоидом близких видов рыб. Оплодотворения не происходит, но яйцеклетка начинает делиться.
Основным способом разведения тутовых шелкопрядов является стимулирование партеногенеза путем кратковременного нагревания яиц до 46°С. Из неоплодотворенных яйцеклеток развиваются полноценные в генетическом отношении самки шелкопряда.
Способы размножения организмов
Все известные способы размножения организмов в природе сводятся к двум основным формам: бесполой и половой.
Бесполое размножение. В бесполой форме размножение осуществляется родительской особью самостоятельно, без обмена наследственной информацией с другими особями. Дочерний организм образуется путем отделения от родительской особи одной или нескольких соматических (телесных) клеток и дальнейшего их размножения посредством митоза. Потомство наследует признаки родителя, являясь в генетическом отношении его точной копией. Различают несколько типов бесполого размножения.
Простое деление. Особенно распространено бесполое размножение у бактерий и синезеленых водорослей. Единственная клетка этих безъядерных организмов разделяется пополам или сразу на несколько частей. Каждая часть является целостным функциональным организмом.
Простым делением размножаются амебы, инфузории, эвглены и другие простейшие. Разделение происходит посредством митоза, поэтому дочерние организмы получают от родительских тот же набор хромосом.
Почкование. Этот тип размножения используют как одноклеточные, так и некоторые многоклеточные организмы: дрожжи (низшие грибы), инфузории, коралловые полипы.
Почкование у пресноводных гидр происходит следующим образом. Сначала на стенке гидры образуется вырост, который постепенно удлиняется. На его конце появляются щупальца и ротовое отверстие. Из почки вырастает маленькая гидра, которая отделяется и становится самостоятельным организмом. У других существ почки могут оставаться на теле родителя.
Фрагментация. Ряд плоских и кольчатых червей, иглокожие (морские звезды) могут размножаться посредством расчленения тела на несколько фрагментов, которые затем достраиваются до целостного организма. В основе фрагментации лежит способность многих простых существ к регенерации утраченных органов. Так, если от морской звезды отделить луч, то из него вновь разовьется морская звезда. Гидра способна восстановиться из 1/200 части своего организма. Обычно размножение фрагментацией происходит при повреждениях. Самопроизвольную фрагментацию осуществляют только плесневые грибы и некоторые морские кольчатые черви.
Спорообразование. Родоначальницей нового организма может стать специализированная клетка родительского существа — спора. Такой способ размножения характерен для растений и грибов. Размножаются спорами многоклеточные водоросли, мхи, папоротники, хвощи и плауны.
Споры представляют собой клетки, покрытые прочной оболочкой, защищающей их от чрезмерной потери влаги и устойчивой к температурным и химическим воздействиям. Споры наземных растений пассивно переносятся ветром, водой, живыми существами. Попадая в благоприятные условия, спора раскрывает оболочку и приступает к митозу, образуя новый организм. Водоросли и некоторые грибы, обитающие в воде, размножаются зооспорами, снабженными жгутиками для активного передвижения.
Одноклеточное животное малярийный плазмодий (возбудитель малярии) размножается посредством шизогонии — множественного деления. Сначала в его клетке путем делений формируется большое количество ядер, затем клетка распадается на множество дочерних (Слюсарев О.О. та ін., 1987).
Вегетативное размножение. Этот вид бесполого размножения широко распространен у растений. В отличие от спорообразования, вегетативное размножение осуществляется не особыми специализированными клетками, а практически любыми частями вегетативных органов.
Половое размножение. В половом размножении, в отличие от бесполого, участвует пара особей. Их половые клетки (гаметы) несут гаплоидные наборы хромосом. В процессе оплодотворения гаметы сливаются и образуют диплоидную оплодотворенную яйцеклетку (зиготу), которая дает начало новому организму.
Одна из гомологичных хромосом соматической клетки достается от "мамы", а другая — от "папы". В результате части генетического материала родительских особей объединяются, и в потомстве появляются новые комбинации генов. Разнообразие генетического материала позволяет потомству успешнее приспосабливаться к изменяющимся внешним условиям. В обогащении наследственной информации состоит главное преимущество полового размножения, его основное биологическое значение.
У обоеполых растений имеется ряд особенностей, исключающих самооплодотворение. Тычинки и пестики обоеполых цветков созревают не одновременно, поэтому происходит именно перекрестное опыление разных особей. Конопля имеет раздельно мужские пестичные и женские тычиночные цветки на разных особях.
Развитие половых клеток. Формирование половых клеток (гаметогенез) происходит в половых железах. Развитие женских гамет (яйцеклеток) происходит в яичниках и лат. ovum яйцо + genesis происхождение). Мужские<носит название овогенеза ( гаметы (сперматозоиды) формируются в семенниках в процессе сперматогенеза. Половые железы практически всех существ имеют трубчатое строение. Гаметогенез происходит последовательно в трех зонах: размножения, роста и созревания. Соответственно выделяют и три периода развития гамет.
В начальный период размножения половые клетки имеют диплоидный набор хромосом и делятся посредством митоза. Особенно интенсивно размножаются мужские гаметы. У мужских особей половые клетки образуются практически всю жизнь. Формирование яйцеклеток млекопитающих происходит только в эмбриональный период, далее они сохраняются в состоянии покоя.
Попадая в зону роста, половые клетки уже не делятся, а только растут. Мужские гаметы вырастают не слишком сильно, а яйцеклетки увеличивают свои размеры в сотни, тысячи и миллионы раз (вспомним куриную яйцеклетку — яйцо). Внешние оболочки яйцеклетки надежно защищают развивающийся плод, через них, в особенности сквозь скорлупу птичьих яиц, бактерии и вирусы не проникают, а воздух проходит свободно.
Сперматозоиды значительно меньше яйцеклеток. У млекопитающих они имеют форму длинной нити с головкой, шейкой и жгутиком. В головке содержатся хромосомы, а на ее передней части — комплекс Гольджи с ферментами, растворяющими оболочку яйцеклетки и обеспечивающими проникновение ядра сперматозоида (оболочка остается снаружи). Мужские гаметы не только вносят генетическую информацию, но и инициируют развитие яйцеклетки. В шейке расположена центриоль, образующая жгутик сперматозоида, позволяющий ему интенсивно передвигаться. Источником энергии для движений жгутика служат молекулы АТФ, запасенные в шейке. Для пополнения АТФ в шейке расположены митохондрии.
После того как гаметы вырастают до размеров взрослых половых клеток, они попадают в зону созревания.
Основу созревания гамет составляет специфический процесс деления каждой половой клетки на четыре новых. Созревание яйцеклеток и сперматозоидов протекает в основном сходным образом, различия возникают только на последней стадии по следующей причине. Для успешного оплодотворения необходимо достаточно большое количество сперматозоидов. Поэтому все четыре образовавшиеся мужские клетки оказываются функциональными и жизнеспособными. Основной задачей яйцеклетки является не только оплодотворение, но и успешное созревание плода. С этой целью процесс деления происходит неравноценно: весь желток уходит в одну яйцеклетку, и она оказывается единственной жизнеспособной. Остальные три вполне функциональные яйцеклетки не получают при созревании питательных веществ и вскоре гибнут. Их называют направительными, или полярными тельцами.
Период созревания гамет, сопровождаемый специфическим разделением каждой из них на четыре новых, носит название мейоза. В следующем параграфе мы рассмотрим происходящие в мейозе процессы более подробно (Слюсарев О.О. та ін., 1987).
Хромосомный набор клеток. В клетках большинства организмов хромосомы парные. Парные хромосомы, одинаковые по форме, величине и наследственной информации, называют гомологичными, а двойной, парный набор хромосом, - диплоидным (2п). В некоторых клетках и организмах содержится одинарный, гаплоидный набор хромосом (п). В этом случае одинаковых хромосом нет.
Число хромосом для каждого вида организмов постоянно. Так, в клетках человека - 46 хромосом (23 пары), голубя - 80 (40 пар), дождевого червя - 36 (18 пар), в клетках пшеницы - 28 (14 пар). Эти организмы содержат диплоидный набор хромосом. Некоторые организмы, такие как водоросли, мхи, грибы, имеют одиночный, гаплоидный набор хромосом. Гаплоидный набор обозначают буквой п, диплоидный - 2п.
МЕЙОЗ
Образование гаплоидного набора хромосом из диплоидной клетки происходит в процессе особого типа деления - мейоза. Это такое деление клетки, при котором хромосомный набор клетки уменьшается вдвое. Этот тип деления называется редукционным. Для мейоза характерны те же стадии, что и для митоза, но процесс состоит из двух последовательных делений (мейоз 1 и мейоз 2). В результате образуются не 2, а 4 клетки.
Стадии мейоза. Как и митозу, мейозу предшествует интерфаза, в которой происходит репликация ДНК и удвоение хромосом. Каждая хромосома перед началом деления состоит из 2 молекул ДНК - 2 сестринских хроматид. В это время клетка имеет диплоидный набор хромосом - 2п, но каждая хромосома состоит из двух ДНК - 2с. Всего в клетке 4с молекул ДНК. Таким образом, перед началом деления хромосомный набор составляет 2п4с.
Профаза 1. Фаза значительно длиннее, чем в митозе. Хромосомы спирализуются и утолщаются. Гомологичные хромосомы попарно соединяются и накладываются друг на друга - конъюгируют. В результате образуются биваленты - двойные хромосомы. Во время конъюгации может происходить обмен участками гомологичных хромосом - кроссинговер, т.е. парные хромосомы обмениваются некоторыми генами, что изменяет комбинацию генов в хромосоме. Ядерная мембрана постепенно исчезает, центриоли расходятся к полюсам клетки и образуется веретено деления.
Метафаза 1. Гомологичные хромосомы попарно в виде бивалентов располагаются в экваториальной зоне клетки над и под плоскостью экватора. Центромеры хромосом соединяются с нитями веретена деления.
Анафаза 1. Гомологичные хромосомы расходятся к полюсам клетки. Это основное отличие мейоза от митоза, где идет расхождение сестринских хроматид. Таким образом, у каждого полюса оказывается только одна хромосома из пары, т.е. число хромосом у полюсов равно п2с. Происходит редукция числа хромосом - уменьшение вдвое.
Телофаза 1. Делится все остальное содержимое клетки, образуется перетяжка и возникают две клетки с гаплоидным набором хромосом. Каждая хромосома состоит из 2 молекул ДНК - 2 сестринских хроматид. Образование 2 клеток может наступать не всегда. Иногда телофаза сопровождается только образованием 2 гаплоидных ядер. Кариокинез происходит всегда, а цитокинез может отсутствовать.
Перед 2-м делением мейоза интерфаза отсутствует. Обе клетки одновременно приступают ко 2-му делению мейоза. Мейоз 2 полностью идентичен митозу и происходит в 2 клетках (ядрах) синхронно.
Профаза 2. Ядерная мембрана исчезает, образуется веретено деления. Хромосомы спирализуются и утолщаются. Фаза значительно короче профазы 1.
Метафаза 2. Хромосомы выстраиваются в плоскости экватора. Нити веретена деления соединены с центромерами.
Анафаза 2. К полюсам клетки расходятся сестринские хроматиды - хромосомы. У каждого полюса образуется набор хромосом п, т.е. гаплоидный набор, где каждая хромосома состоит из 1 молекулы ДНК.
Телофаза 2. Образуются 4 гаплоидных ядра и 4 гаплоидные клетки с набором хромосом п в каждой.
Биологический смысл мейоза заключается в образовании гаплоидных клеток, которые при слиянии вновь восстанавливают диплоидный набор. Этот процесс обеспечивает постоянный набор хромосом у вновь образующихся организмов при половом размножении. В мейозе гомологичные хромосомы попадают в разные гаметы, а негомологичные хромосомы расходятся в гаметы произвольно, независимо друг от друга. Это увеличивает число типов гамет и является основой для генетического разнообразия организмов. Кроме того, конъюгация и кроссинговер также способствуют комбинации генов и увеличивают разнообразие гамет и сочетание признаков в организме (Слюсарев О.О. та ін., 1987).
Размножение, или репродукция,— одно из основных свойств, характеризующих жизнь. Под размножением понимается способность организмов производить себе подобных. Явление размножения тесно связано с одной из черт, характеризующих жизнь,— дискретностью. Как известно, целостный организм состоит из дискретных единиц — клеток. Жизнь почти всех клеток короче жизни особи, поэтому существование каждой особи поддерживается размножением клеток. Каждый вид организмов также дискретен, т. е. состоит из отдельных особей. Каждая из них смертна. Существование вида поддерживается размножением (репродукцией) особей. Следовательно, размножение — необходимое условие существования вида и преемственности последовательных генераций внутри вида. В основе классификации форм размножения лежит тип деления клеток: митотический (бесполое) и мейотический (половое). Формы размножения можно представить в виде следующей схемы:
Бесполое размножение. У одноклеточных эукариот это — деление, в основе которого лежит митоз, у прокариот — разделение нуклеоида, а у многоклеточных организмов — вегетативное (лат. vegetatio — расти) размножение, т. е. частями тела или группой соматических клеток. Бесполое размножение одноклеточных организмов. У одноклеточных растений и животных различают следующие формы бесполого размножения: деление, эндогония^ множественное деление (шизогония) и почкование.
Д е л е н и е характерно для одноклеточных (амебы, жгутиковые, инфузории). Сначала происходит митотическое деление ядра, а затем в цитоплазме возникает все углубляющаяся перетяжка. При этом дочерние клетки получают равное количество информации. Органоиды обычно распределяются равномерно. В ряде случаев обнаружено, что делению предшествует их удвоение. После деления дочерние особи растут и, достигнув величины материнского организма, переходят к новому делению.
Эндогония — внутреннее почкование. При образовании двух дочерних особей — эндодиогонии — материнская дает лишь двух потомков (так происходит размножение токсоплаз-мы), но может быть множественное внутреннее почкование, что приведет к шизогонии.
Шизогония, или множественное деление — форма размножения, развившаяся из предыдущей. Она тоже встречается у одноклеточных организмов, например у возбудителя малярии — малярийного плазмодия. При шизогонии происходит многократное деление ядра без цитокинеза, а затем и вся цитоплазма разделяется на частички, обособляющиеся вокруг ядер. Из одной клетки образуется много дочерних. Эта форма размножения обычно чередуется с половой.
Почкование заключается в том, что на материнской клетке первоначально образуется небольшой бугорок, содержащий дочернее ядро, или нуклеоид. Почка растет, достигает размеров материнской особи и затем отделяется от нее. Эта форма размножения наблюдается у бактерий, дрожжевых грибов, а из одноклеточных животных — у сосущих инфузорий.
Спорообразование встречается у животных, относящихся к типу простейших, классу споровиков. Спора — одна из стадий жизненного цикла, служащая для размножения, она состоит из клетки, покрытой оболочкой, защищающей от неблагоприятных условий внешней среды. Некоторые бактерии после полового процесса способны образовывать споры. Споры бактерий служат не для размножения, а для переживания неблагоприятных условий и по своему биологическому значению отличаются от спор простейших и многоклеточных растений.
Вегетативное размножение многоклеточных животных. При вегетативном размножении у многоклеточных животных новый организм образуется из группы клеток, отделяющейся от материнского организма. Вегетативное размножение встречается лишь у наиболее примитивных из многоклеточных животных: губок, некоторых кишечнополостных, плоских и кольчатых червей (Слюсарев О.О. та ін., 1987).
У губок и гидры за счет размножения группы клеток на теле образуются выпячивания (почки). В почку входят клетки экто- и энтодермы. У гидры почка постепенно увеличивается, на ней формируются щупальца, и, наконец, она отделяется от материнской особи. Ресничные и кольчатые черви делятся перетяжками на несколько частей; в каждой из них восстанавливаются недостающие органы. Так может образоваться цепочка особей. У некоторых кишечнополостных встречается размножение стробиляцией, заключающейся в том, что полипоидный организм довольно интенсивно растет и по достижении известных размеров начинает поперечными перетяжками делиться на дочерние особи. В это время полип напоминает стопку тарелок. Образовавшиеся особи — медузы отрываются и начинают самостоятельную жизнь. У многих видов (например , кишечнополостных) вегетативная форма размножения чередуется с половой.
Особой формой вегетативного размножения следует признать полиэмбрионию, при которой эмбрион делится на несколько частей, каждая из которых развивается в самостоятельный организм. Полиэмбриония распространена у ос (наездники), ведущих паразитический образ жизни в личиночном состоянии, из млекопитающих — у броненосца. К этой категории явлений относится образование однозиготных близнецов у человека и других млекопитающих.
Половое размножение. Половое размножение характеризуется наличием полового процесса, который заключается обычно в слиянии двух клеток — гамет. Формированию гамет у многоклеточных предшествует особая форма деления клеток — мейоз.
«В результате мейоза в половых клетках находится не диплоидный, как в соматических клетках, а гаплоидный набор хромосом. Поэтому в жизненном цикле организмов, размножающихся половым способом, имеется две фазы —гаплоидная и диплоидная. Продолжительность этих фаз у различных групп организмов не одинакова: у грибов, мхов и некоторых простейших преобладает гаплоидная, у высших растений и многоклеточных животных — диплоидная. Биологическое значение мейоза описано ниже.
Конъюгация — своеобразная форма полового процесса, существующая у инфузорий. Инфузории — животные типа простейших. Характерной чертой их является наличие двух ядер: большого — макронуклеуса и малого— микронуклеуса. Инфузории обычно размножаются делением надвое. При этом микронуклеус делится митотически. При половом процессе — конъюгации — инфузории сближаются попарно, между ними образуется протоплазматический мостик. Одновременно в ядерном аппарате каждого из партнеров совершаются сложные процессы: макронуклеус растворяется, а из микронуклеуса в результате ряда перестроек в конце концов формируются стационарное и мигрирующее ядра. Каждое из них содержит гаплоидный набор хромосом. Мигрирующие ядра переходят в цитоплазму партнера. В каждом из них стационарное и мигрирующее ядра сливаются, образуя так называемый синкарион (гр. syn — вместе, karyon — ядро), содержащий диплоидный набор хромосом. После ряда сложных перестроек из синкариона формируются обычные макро- и микронуклеусы.
После конъюгации инфузории расходятся; каждая из них сохраняет самостоятельность, но благодаря обмену кариоплазмой наследственная информация каждой особи изменяется, что, как и в других случаях полового процесса, может привести к появлению новых комбинаций свойств и признаков.
Для бактерий характерно размножение почкованием, но обнаружен и половой процесс. У некоторых видов бактерий существуют особи, которые можно назвать женскими (реципиентными) и мужскими (донорскими). Между такими особями периодически осуществляется конъюгация. Она резко отличается от конъюгации инфузорий. У бактерий две особи образуют между собой протоплазматический мостик, через который часть нити ДНК переходит из донорской клетки в ре-ципиентную. Явление конъюгации у бактерий также приводит к комбинативной изменчивости.
Образование гамет и гаметическая копуляция. Копуляцией (лат. copulatio — совокупление) называется половой процесс у одноклеточных организмов, при котором две особи приобретают половые различия, т. е. превращаются в гаметы и полностью сливаются, образуя зиготу. В процессе эволюции степень различия гамет нарастает. На первом этапе полового размножения гаметы еще не наблюдается морфологической дифференцировки, т. е. имеет место изогамия. Примером может служить размножение раковинной корненожки полистомеллы (Polystomel la) и жгутиконосца поли-томы (Polytoma). У этих одноклеточных животных ядро делится мейозом, три гаплоидные ядра лизируются, а клетка, приобретая пару жгутиков, становится подвижной изогаметой.
Дальнейшее усложнение процесса связано и с дифференцировкой гамет на крупные и мелкие клетки, т. е. появлением анизогамии (гр. anisos— неравный). Наиболее примитивная форма ее существует у некоторых колониальных жгутиконосцев. У Pandorina morum образуются как большие, так и малые гаметы, причем и те, и другие подвлжны. Более того, сливаться попарно могут не только большая гамета с малой, но и малая с малой, однако большая гамета с большой никогда не сливается. Следовательно, у пандори-ны наряду с появлением анизогамии еще сохраняется изогамия. У другого колониального жгутиконосца Euda-rina elegans и хламидомонад макро- и микрогаметы еще подвижны, но сливаются лишь разные гаметы, т. е. проявляется исключительно анизогамия.
Развитие гамет у многоклеточных животных происходит в половых железах — гонадах (гр. gone — семя). Различают два типа половых клеток: мужские (сперматозооны) и женские (яйцеклетки). Сперматозооны развиваются в семенниках, яйцеклетки — в яичниках.
Сперматогенез происходит в извитых семенных канальцах яичка. Оттуда продукты сперматогенеза поступают в семявыводящий проток, и далее - в семяизвергательный канал.
Гаметогенез
Эпителий зрелого семенного канальца состоит примерно из 6 слоев клеток. Самый наружный слой - клетки зачаткового эпителия, которые делятся митозом. Образовавшиеся в результате этого деления клетки перемещаются внутрь канальца, образуя второй слой. В нем клетки также сохраняют способность к делению митозом. Они будут являться сперматогониями. Фаза размножения в процессе сперматогенеза связана именно с этими двумя слоями клеток. Перемещение размножающихся сперматогониев в третий слой связано с началом фазы роста и превращения сперматогониев в более крупные сперматоциты I порядка. В этом слое клеток происходит первое мейотическое деление, и из одного сперматоцита первого порядка образуются две клетки с гаплоидным набором хромосом, которые становятся сперматоцитами второго порядка. Любой этап клеточного деления сопровождается перемещением клеток из более наружного слоя в более внутренний. Изменяется окружение клеток, соответственно изменяется и дифференцировка. Каждый сперматоцит второго порядка проходит второе мейотическое деление и дает начало двум сперматидам с гаплоидным набором хромосом. Вначале сперматиды являются небольшими клетками с округлым ядром. Вскоре ядро удлиняется и располагается у того конца клетки, который обращен к стенке канальца. В каждой сперматиде одна из двух центриолей образует жгутик, конец которого обращен к центру канальца . Созревание сперматид происходит в самых внутренних слоях семенного канальца. Здесь же сперматиды превращаются в зрелые сперматозоиды, способные к движению с помощью жгутика и покидают семенной каналец. У человека длительность фазы роста, составляет 14 дней. Мужские половые клетки не развиваются поодиночке. Они растут в клонах и объединены между собой цитоплазматическими мостиками. Контакты между клетками разрушаются лишь при формировании зрелых сперматозоидов. Вспомогательную функцию выполняют клетки Сертоли. Таким образом, в результате процесса сперматогенеза из одного диплоидного сперматоцита I порядка получаются 4 зрелых сперматозоида. Общая схема процесса сперматогенеза представлена на рисунке.
В детстве (от рождения до 10 лет) семенные канальцы развиты слабо. Они состоят из клеток зачаткового эпителия, покрывающих каналец, и сперматогониев. В подростковом возрасте (от 10 до 14 лет) сперматогонии начинают активно делиться, и процесс сперматогенеза активируется. В дальнейшем сперматогенез происходит непрерывно, в течение всей жизни мужчины. Семенники расположены вне брюшной полости, и поэтому спермин развиваются при температуре на 2-3°С ниже температуры внутренних областей тела. У мужчин, принимающих очень горячие ванны или носящих слишком тесные трусы, образование спермиев снижается, что в конечном счете может привести к бесплодию. В норме процесс образования спермия занимает около 70 суток. На 1 г веса яичка образуется 107 спермиев в сутки.
Сперматозоиды, или спермин, - это очень мелкие подвижные клетки. В головке сперматозоида находится ядро, содержащее гаплоидный набор хромосом (23). К периферии от ядра лежит особая структура - акросома. Функционально акросому можно рассматривать как увеличенную лизосому, т.к. к эта органелла ограничена одной мембраной и наполнена гидролитическими ферментами, помогающими проникновению спермия в ооцит. Округлая головка сперматозоида сужается и переходит в шейку, где под прямым углом другу к другу располагается пара центриолей. Микротрубочки одной из центриолей являются местом образования осевой структуры жгутика так, что система микротрубочек жгутика проходит от самого начала шейки сперматозоида до кончика его хвоста. Более нижняя часть шейки расширена за счет многочисленных митохондрий, уложенных в виде спирали вокруг жгутика. Митохондрии обеспечивают энергией движение сперматозоида. Заканчивается спермий жгутиком, имеющим типичное строение (Шевченко В.А. та ін., 2004).
Если мужские и женские половые клетки развиваются в одной особи, такой организм называется гермафродитным. Гермафродитизм свойствен многим животным, стоящим на сравнительно низких ступенях эволюции органического мира: плоским и кольчатым червям, моллюскам. Как патологическое состояние он может встречаться и в других группах животных и у человека. У человека это обычно следствие нарушений эмбрионального развития. Описаны случаи и мозаицизма, когда в одних соматических клетках набор хромосом XX, в других — ХУ.
При естественном гермафродитизме мужские и женские половые железы могут функционировать одновременно на протяжении всей жизни данной особи, например у сосальщиков, ленточных и кольчатых червей. В таких случаях организмы, как правило, имеют ряд приспособлений, препятствующих самооплодотворению.
У некоторых моллюсков половая железа периодически продуцирует то яйцеклетки, то сперматозооны. Это зависит как от возраста особи, так и от условий существования. Например, у устриц это может быть обусловлено преобладанием белкового или углеводного питания.
Половые клетки развиваются из первичных половых клеток, обособляющихся на ранних стадиях зародышевого развития; у аскариды, ракообразных, насекомых и лягушки — уже в процессе дробления, у пресмыкающихся и птиц — на стадии гаструлы, у млекопитающих и человека — во время раннего органогенеза. Первичные половые клетки имеют ряд морфологических и биохимических особенностей в отличие от соматических клеток. Если у зародыша разру2 шить первичные половые клетки, то гаметы у него не формируются.
Строение половых клеток (гамет). Гаметы представляют собой высокодифференцированные клетки. В процессе эволюции они приобрели приспособления для выполнения специфических функций. Ядра как мужских, так и женских гамет в равной мере содержат наследственную информацию, необходимую для развития организма. Но другие функции яйцеклетки и сперматозоона различны, поэтому по строению они резко отличаются.
Оогенез происходит в яичниках. У половозрелой женщины они представляют собой уплощенные овальные тела длиной 2,5-5,0 см, шириной 1,5-3,0 см. Яйцеклетки расположены в корковом слое яичника в эпителиальных пузырьках, называемых фолликулами. Вне беременности примерно каждые 28 дней в одном из яичников созревает очередной фолликул, который лопается, высвобождая ооцит второго порядка. Этот процесс называется овуляцией.
Развитие яичников у эмбриона начинается, как было оказано выше, в возрасте 5 недель. Примерно в то же время, когда закладываются яичники, среди клеток коркового слоя выявляются первичные половые клетки. Они мигрируют в развивающийся яичник из эндодермы желточного мешка. Женские половые клетки, мигрирующие в яичник и располагающиеся в его строме, называют оогониями. В начале развития яичников эти клетки размножаются митозом, и число их возрастает. Однако еще в пренатальном периоде большинство первичных половых клеток погибает. В момент рождения девочки их количество равно примерно 2 млн. в обоих яичниках. К моменту полового созревания большинство из них дегенерирует, так что в яичниках их остается только около 40000. Лишь примерно 450 из них достигают стадии ооцитов второго порядка и выходят из яичника в процессе овуляции (Шевченко В.А. та ін., 2004).
В развивающемся яичнике первичные половые клетки покрываются тонким слоем эпителиальных клеток, образуя фолликулы . Клетки, окружающие ооцит одним слоем, называются фолликулярными. До третьего месяца жизни плода происходят только митотические деления. Примерно к концу третьего месяца оогонии, находящиеся в фолликуле, начинают активно расти и дифференцироваться, в результате чего каждый оогоний превращается в ооцит первого порядка. Ооциты первого порядка вступают в мейоз. Первое редукционное деление мейоза в ооцитах первого порядка начинается в пренатальном периоде к концу третьего месяца жизни плода. Число ооцитов, вступивших в это время в мейоз, невелико. На препаратах их идентифицируют по лептотене и зиготене. Начиная с седьмого месяца в мейоз вступают новые ооциты первого порядка. Первые пахитены и диплотены наблюдаются у семимесячного плода. Ооциты первого порядка вступают в профазу первого деления мейоза, но не завершают его. Мейоз задерживается в конце профазы, и клетки вступают в "фазу покря" - диктиотену. Ко времени рождения девочки ооциты первого порядка продолжают находиться на этой стадии. Их деление завершается только после наступления половой зрелости. Между рождением и наступлением половой зрелости яичник увеличивается в размере, но лишь отдельные фолликулы начинают расти и развиваться. Изменения, которые происходят в организме женщины в период полового созревания, обусловлены половой функцией яичников, которые стимулируются гонадотропными гормонами гипофиза. Каждый из нескольких тысяч первичных фолликулов, расположенных в корковом веществе яичника, ко времени полового созревания состоит из ооцита первого порядка диаметром 25-30 мкм, окруженного одним слоем фолликулярных клеток. Ядро ооцита первого порядка остается в профазе первого деления меиоза: ядрышко хорошо выражено, хромосомы вытянуты в тонкие нити. В таком виде они остаются, пока, спустя годы, не завершится мейоз. В цитоплазме ооцита можно наблюдать желточные зерна. В электронном микроскопе в цитоплазме ооцита видны обычные органеллы.
Примерно каждые 28 дней в яичнике половозрелой небеременной женщины развивается несколько фолликулов. Они увеличиваются в размере и приближаются к поверхности. Однако обычно только один из них созревает, прорывает поверхность яичника и высвобождает ооцит второго порядка. Развитие зрелого фолликула связано с двукратным увеличением размеров ооцита и образованием блестящей оболочки (zona pellucida) вокруг него. Стадия роста ооцита сопровождается активным делением фолликулярных клеток и накоплением фолликулярной жидкости внутри фолликула. Когда фолликул разрывается, находящийся в нем ооцит второго порядка окружен фолликулярными клетками. Эти клетки формируют вокруг ооцита лучистый венец (corona radiata).
Период роста ооцита сопровождается образованием большого количества разных типов РНК. Для этого в клетке существуют разнообразные механизмы. Накопление рибосомной РНК и образование множества ядрышек, где происходит сборка и созревание субъединиц рибосом, обеспечивается механизмом амплификации генов. Амплификация рибосомных генов представляет собой процесс множественной редупликации участков ДНК, кодирующих рибосомную РНК. В результате такой локальной редупликации ДНК количество копий рибосомных генов увеличивается до 1-2 тысяч, и каждая из них является районом ядрышкового организатора. В результате образуется более тысячи дополнительных ядрышек, где синтезируются и созревают рибосомные РНК, необходимые для сборки рибосом. Рибосомы, в свою очередь, необходимы для синтеза белка.
Быстрое увеличение количества разнообразных информационных РНК происходит за счет активации транскрипции в локально деспирали-зованных участках хромосом, когда хромосомы приобретают структуру "ламповых щеток". Такая структура характерна для созревающих ооцитов у многих видов животных. Известно, что начинает она проявляться в пахитене, а наиболее выражена в диплотене и диктиотене (Шевченко В.А. та ін., 2004).
Увеличение количества разнообразных РНК обеспечивает накопление питательных веществ в цитоплазме ооцитов. Этому же процессу способствуют и фолликулярные клетки, образующие несколько слоев вокруг ооцита первого порядка.
Процесс овуляции предваряется быстрым завершением первого мейотического деления в ооците первого порядка. В результате образуются две гаплоидные клетки, окутанные лучистым венцом. Распределение цитоплазмы между ними происходит неравномерно: одна из дочерних клеток - ооцит второго порядка, - получает почти всю цитоплазму материнской клетки, тогда как на долю второй - первого полярного тельца - не достается почти ничего. Ооцит второго порядка вступает во второе мейотическое деление, но оно доходит только до стадии метафазы и останавливается до тех пор, пока не произойдет оплодотворение. (Отметим, что вероятность этого мала). Поскольку во время первого деления мейоза число хромосом сокращается вдвое, ооцит второго порядка, а следовательно, и яйцеклетка несет гаплоидный набор хромосом. Такой же набор хромосом имеет и первое полярное тельце. Общая схема оогенеза представлена на рисунке.
Таким образом, в отличие от образования спермиев, которое начинается у мужчин только при наступлении полового созревания, образование яйцеклеток у женщин начинается еще до рождения и завершается для каждой яйцеклетки только после ее оплодотворения. Созревающие ооциты пребывают в профазе первого мейоза долгие годы. Кроме того, у мужчин из одного диплоидного сперматоцита первого порядка образуется 4 гаплоидных сперматозоида, а у женщин - из одного диплоидного ооцита первого порядка образуется лишь одна зрелая гаплоидная яйцеклетка. То обстоятельство, что полярные тельца почти не получают цитоплазмы, позволяет ооциту снабдить зиготу полным набором цитоплазматических компонентов, таких, как митохондрии и расположенные определенным образом информационные РНК.
Яйцеклетки неподвижны, имеют шарообразную или слегка вытянутую форму. Они содержат все типичные клеточные органоиды, но строение их отличается от такового других клеток, так как приспособлено для реализации возможности развития целого организма. Яйцеклетки значительно крупнее, чем соматические клетки. Внутриклеточная структура цитоплазмы в них специфична для каждого вида животных, чем обеспечиваются видовые (а нередко и индивидуальные) особенности развития. В яйцеклетках содержится ряд веществ, необходимых для развития зародыша.
К их числу относится питательный материал (желток). У некоторых видов животных накапливается столько желтка в яйцеклетках, что они могут быть видны невооруженным глазом (икринки рыб и земноводных, яйца рептилий и птиц). Из современных животных наиболее крупные яйца у сельдевой акулы (29 см в диаметре). У птиц яйцом считается то, что в повседневной жизни называется «желтком»; диаметр яйца страуса 10,5 см, курицы— около 3,5 см. Небольшие размеры имеют яйцеклетки животных, у которых развивающийся зародыш получает питание из материнского организма, например у высших млекопитающих. Диаметр яйцеклетки мыши — 60 мкм, коровы—100 мкм. Яйцеклетка человека имеет в поперечнике 130— 200 мкм.
Яйцеклетки покрыты оболочками, которые выполняют защитную функцию, обеспечивают необходимый тип обмена веществ, у плацентарных млекопитающих служат для внедрения зародыша в стенку матки, а также выполняют и другие функции.
Сперматозооны обладают способностью к движению, чем в известной мере обеспечивается возможность встречи гамет. По внешней морфологии и малому количеству цитоплазмы сперматозооны резко отличаются от всех других клеток, но все основные органоиды в них имеются.
Типичный сперматозоон имеет головку, шейку и хвост. На переднем конце головки расположена акросома, состоящая из видоизмененного комплекса Гольджи. Основную массу головки занимает ядро. В шейке находятся центриоль и спиральная нить, образованная митохондриями.
При исследовании сперматозоонов под электронным микроскопом обнаружено, что протоплазма головки его имеет не коллоидное, а жидкокристаллическое состояние. Этим достигается устойчивость сперматозоонов к неблагоприятным влияниям внешней среды. Например, они в меньшей степени повреждаются ионизирующей радиацией по сравнению с незрелыми половыми клетками.
Размеры сперматозоонов всегда микроскопические. Наиболее крупные они у тритона — около 500 мкм, у домашних животных (собака, бык, лошадь, баран) — от 40 до 75 мкм. Длина сперматозоонов человека колеблется в пределах 52—70 мкм. Все сперматозооны несут одноименный (отрицательный) электрический заряд, что препятствует их склеиванию. Число сперматозоонов, образующихся у животных, колоссально. Например, при половом акте собака выделяет их около 60 млн., баран — до 2 млрд,. жеребец около 10 млрд., человек — около 200 млн.
Для некоторых животных характерны атипичные сперматозооны, строение которых весьма разнообразно. Например, у ракообразных они обладают выростами в виде лучей или отростков, у круглых червей имеют форму шаровидных или овальных телец и т. д.
Процесс формирования половых клеток (гамет) известен под общим названием гаметогенеза. Он характеризуется рядом весьма важных биологических процессов и протекает несколько по каналец видно, что в нем имеется несколько слоев клеток. Они представляют собой последовательные стадии развития сперматозоонов.
Наружный слой (зона размножения) составляют сперматогонии — клетки округлой формы; у них относительно большое ядро и значительное количество цитоплазмы. В период эмбрионального развития и после рождения до полового созревания сперматогонии делятся путем митоза, благодаря чему увеличиваются число этих клеток и сам семенник. Период интенсивного деления сперматогонии называется периодом размножения. После наступления половой зрелости часть сперматогониев также продолжает делиться митотически и образовывать такие же клетки, но некоторые из них перемещаются в следующую зону роста, расположенную ближе к просвету канальца. Здесь происходит значительное возрастание размеров клеток за счет увеличения количества цитоплазмы. В этой стадии они называются первичными сперматоцитами. Третий период развития мужских гамет называется периодом созревания. В этот период происходят два быстро наступающих одно вслед за другим мейотические деления (Слюсаррев О.О. та ін., 1987)
Оплодотворение — соединение двух гамет, в результате чего образуется оплодотворенное яйцо, или зигота (гр. zygota — соединенная в пару) — начальная стадия развития нового организма.
Оплодотворение влечет за собой два важных следствия: активацию яйца, т. е. побуждение к развитию, и синкариогамию, т. е. образование диплоидного ядра зиготы в результате слияния гаплоидных ядер половых клеток, несущих генетическую информацию двух родительских организмов.
Встрече гамет способствует то, что яйцеклетки растений и животных выделяют в окружающую среду химические вещества — гамоны, активизирующие сперматозооны. Возможно, что активизирующие вещества выделяются и клетками женских половых путей млекопитающих. Установлено, что сперматозооны млекопитающих могут проникнуть в яйцеклетку только в том случае, если находились в женском половом тракте не менее 1 ч.
У спермиев ряда низших растений обнаружен положительный хемотаксис к веществам, выделяемым яйцеклеткой. Убедительных доказательств хемотаксиса у сперматозоонов животных не существует. Они двигаются беспорядочно и с яйцеклеткой сталкиваются случайно.
В оболочке яйцеклетки некоторых животных существует крошечное отверстие — микропиле, через которое проникает сперматозоон. У большинства видов микропиле отсутствует, проникновение сперматозоона осуществляется благодаря акросомной реакции, обнаруженной с помощью электронной микроскопии. Расположенная на переднем конце сперматозоона акросомная область окружена мембраной. При контакте с яйцом оболочка акросомы разрушается. Из нее выбрасывается акросомная нить, выделяются фермент, растворяющий оболочку яйцеклетки, и фермент разрушающий фолликулярные клетки, окружающие яйцо. Акросомная нить проникает через растворенную зону яйцевых оболочек и сливается с мембраной яйцеклетки. В этом месте из цитоплазмы яйцеклетки образуется воспринимающий бугорок. Он захватывает ядро, центриоли и митохондрии сперматозоона и увлекает их вглубь яйца. Плазматическая мембрана сперматозоона встраивается в поверхностную мембрану яйца, образуя мозаичную наружную мембрану зиготы.
Проникновение сперматозоона в яйцеклетку изменяет ее обмен веществ, показателем чего является ряд морфологических и физиологических преобразований. Повышается проницаемость клеточной мембраны, усиливается поглощение из окружающей среды фосфора и калия, выделяется кальций, увеличивается обмен углеводов, активируется синтез белка. У ряда животных возрастает потребность в кислороде. Так, у морского ежа в первую же минуту после оплодотворения поглощение кислорода гавышается в 80 раз. Меняются коллоидные свойства протоплазмы. Вязкость увеличивается в 6—8 раз. В наружном слое яйца изменяются эластичность, и оптические свойства. На поверхности отслаивается оболочка оплодотворения; между ней и поверхностью яйца образуется свободное, наполненное жидкостью, пространство. Под ним образуется оболочка, которая обеспечивает скрепление клеток, возникающих в результате дробления яйца. После образования оболочки оплодотворения другие сперматозооны уже не могут проникнуть в яйцеклетку.
Показателем изменения обмена веществ является и то, что у ряда видов животных созревание яйца заканчивается только после проникновения в него сперматозоона. У круглых червей и моллюсков лишь в оплодотворенных яйцеклетках выделяется вторичный полоцит. У человека сперматозооны проникают в яйцеклетки, находящиеся еще в периоде созревания. Первичный полоцит выделяется через 10 ч, вторичный — только через 1 сутки после проникновения сперматозоона.
Кульминационным моментом в процессе оплодотворения является слияние ядер. Ядро сперматозоона (мужской пронуклеус) в цитоплазме яйца набухает и достигает величины ядра яйцеклетки (женского пронуклеуса). Одновременно мужской пронуклеус поворачивается на 180° и центросомой вперед движется в сторону женского пронуклеуса; последний также перемещается ему навстречу. После встречи ядра сливаются. В результате синка-риогамии восстанавливается диплоидный набор хромосом. После образования синкариона яйцо приступает к дроблению (Шевченко В.А. та ін., 2004).
Изучение физиологии оплодотворения позволяет понять роль большого числа сперматозоонов, участвующих в оплодотворении. Установлено, что если при искусственном осеменении кроликов в семенной жидкости содержится менее 1000 сперматозоонов, оплодотворения не наступает. Точно так же не происходит оплодотворения при введении очень большого числа сперматозоонов (более 100 млн.). Это объясняется в первом случае недостаточным, а во втором — избыточным количеством ферментов, необходимых для проникновения сперматозоонов в яйцеклетку.
Разработаны методики искусственного оплодотворения яйцеклеток человека вне организма и в ряде случаев это осуществлялось по медицинским показаниям. Накануне овуляции хирургическим путем яйцеклетку извлекают из яичника. Ее помещают в специально разработанную химическую среду со сперматозоонами, где и происходит слияние половых клеток. Зародыш на стадии 8—16 бластомеров имплантируется в матку женщины и нормально развивается.
Моноспермия и полиспермия. В яйцеклетку проникает, как правило, один сперматозоон (моноспермия). Однако у насекомых, рыб, птиц и некоторых других животных в цитоплазму яйцеклетки их может попасть несколько. Это явление получило название полиспермии. Роль полиспермии не совсем ясна, но установлено, что ядро лишь одного из сперматозоонов (мужской пронуклеус) сливается с женским пронуклеусом. Следовательно, в передаче наследственной информации принимает участие только этот сперматозоон. Ядра других подвергаются разрушению.
Партеногенез. Особую форму полового размножения представляет собой партеногенез (гр. parthenos — девственница, genos — рождение) т. е. развитие организма из неошюдо-творенных яйцевых клеток. Эта форма размножения была обнаружена в середине XVIII в. швейцарским натуралистом Ш. Бонне (1720—1793). В настоящее время известен не только естественный, но и искусственный партеногенез.
Естественный партеногенез существует у ряда растений, червей, насекомых, ракообразных. У некоторых животных любое яйцо способно развиваться как без оплодотворения, так и после него. Это так называемый факультативный партеногенез. Он встречается у пчел, муравьев, коловраток, у которых из оплодотворенных яиц развиваются самки, а из неопло-дотворенных — самцы. У этих животных партеногенез возник как приспособление для регулирования численного соотношения полов.
При облигатном, т. е. обязательном, партеногенезе яйца развиваются без оплодотворения. Этот вид партеногенеза известен, например, у кавказской скальной ящерицы. У многих видов партеногенез носит циклический характер. У тлей, дафний, коловраток в летнее время существуют лишь самки, размножающиеся партеногенети-чески, а осенью партеногенез сменяется размножением с оплодотворением (это явление получило название гете-рогении; см. ниже). Облигатный и циклический партеногенез исторически развивался у тех видов животных, которые погибали в большом количестве (тли, дафнии) или у которых была затруднена встреча особей различного пола (скальные ящерицы). Вид кавказской скальной ящерицы сохранился лишь благодаря появлению партеногенеза, так как встреча двух особей, обитающих на скалах, отделенных глубокими ущельями, затруднена. В настоящее время все особи этого вида представлены лишь самками, размножающимися партеногенетически. Установлено существование партеногенеза у птиц. У одной из пород индеек многие яйца развиваются пар-теногенетически; из них появляются только самцы (Слюсарев О.О. та ін., 1987)
Биологическая роль полового размножения. Еще К. А. Тимирязев (1843—1920) и А. Вейсман (1834—1914) правильно отмечали, что половое размножение дает неиссякаемый источник изменчивости, обусловливающий широкие возможности приспособления организмов к среде обитания. В этом преимущество полового размножения перед вегетативным и спорообразованием, при которых организм имеет только одного родителя и почти целиком повторяет его особенности. При половом размножении благодаря перекомбинации наследственных свойств обоих родителей появляются разнообразные потомки. Могут отмечаться и неудачные комбинации наследственных признаков; эти организмы гибнут в результате естественного отбора. С другой стороны, наблюдаются и такие комбинации, которые делают организм хорошо приспособленным к условиям существования. Кроме того, с каждым поколением выживают организмы, имеющие наиболее благоприятные комбинации наследственных свойств, что ведет к прогрессивной эволюции.
Благодаря этой биологической роли половое размножение нашло широкое распространение и занимает доминирующее положение в природе, несмотря на определенные сложности его осуществления. Для бесполого размножения достаточно одной особи. Для полового размножения у большинства видов организмов требуется встреча двух особей разного пола. Даже у истинных гермафродитов обычно существует перекрестное оплодотворение. Встреча двух особей подчас связана с затруднениями, поэтому в процессе естественного отбора появились сложные приспособления в строении организмов, развились эндокринные и рефлекторные механизмы, направленные в конечном итоге на обеспечение встречи гамет (Слюсарев О.О. та ін., 1987).
Половой диморфизм. Под половым диморфизмом понимаются различия между самцами и самками в строении тела, окраске, инстинктах и ряде других признаков. Половой диморфизм проявляется уже на ранних ступенях эволюции. У круглых червей самки крупнее самцов. У многих из них, например у аскариды, самец имеет спикулы и загнутый в брюшную сторону задний конец тела.
У представителей всех классов членистоногих половой диморфизм ярко выражен. Для большинства представителей этого типа характерно то, что самки крупнее самцов. Самцы и самки бабочек, как правило, различно окрашены. Самцы у жуков (например, жук-носорог, жук-олень и др.) обладают специальными органами.
Хорошо выражен половой диморфизм у многих видов позвоночных. У некоторых видов рыб он проявляется в величине, особенностях строения тела и окраске. Из земноводных он ярко выражен у тритонов. Самцц этих животных в брачный период имеют яркую окраску брюха и зубчатый гребень на спине.
У большинства видов птиц самцы существенно отличаются от самок, особенно в брачный период. Так, самец болотного кулика турухтана в обычном оперении мало отличается от самки, но весной в его оперении появляется украшение, резко отличающее его от самки и характеризующееся удивительным разнообразием как формы, так и окраски.
Выражен половой диморфизм и у человека. В среднем рост, массивность костей скелета и мускулатуры, величина черепа у мужчин больше, чем у женщин. При одинаковой длине корпуса длина конечностей (особенно ног) у женщин меньше, чем у мужчин, у женщин меньше ширина плеч и больше ширина таза. Для мужчин характерна растительность на лице, низкий тембр голоса, выступающий вперед щитовидный хрящ гортани (кадык). Для женщин типично развитие грудных желез и большее развитие подкожной жировой клетчатки. У мужчин в таком же объеме крови, как у женщин, выше содержание гемоглобина и число эритроцитов. Имеются отличия и в ряде других признаков.
Половой диморфизм явился следствием особой формы естественного отбора, названного Ч. Дарвиным половым отбором. Предпосылкой действия полового отбора было различие в опознавательных признаках самца и самки, чем облегчалась встреча разнополых особей одного вида и препят-ствовалось скрещивание с представителями других видов.
Признаки, по которым один пол отличается от другого, принято делить на первичные и вторичные. К первичным относятся половые железы, все остальные признаки полового диморфизма — вторичные. У насекомых эти признаки определяются генотипом, у большинства высших беспозвоночных и всех позвоночных связаны с эндокринной системой.
Паразитическое ракообразное саккулина, поселяясь в, организме краба, приводит своего хозяина в состояние, получившее название паразитической кастрации при которой разрушается половая железа. В результате самец внешне становится сходным с самкой. У самцов лягушек на большом пальце передних конечностей имеется утолщение — «брачная мозоль». Однако у кастрированных особей это образование не развивается. Если же кастрату пересадить семенник или только инъецировать мужской половой гормон, то мозоль появляется.
М. М. Завадовский (1891—1957) провел интересные опыты на курах. После кастрации петухов (удаление половых желез) гребень перестает расти, бледнеет и сморщивается, исчезает бородка, утрачивается способность петь, теряется половой инстинкт, но сохраняется характерное для петухов яркое оперение. Кастрированная курица лишается полового инстинкта, а после линьки приобретает петушиное оперение. При пересадке кастрату (независимо от того, был ли он прежде самцом или самкой) семенника у него развиваются все признаки петуха, а если пересажен яичник — то курицы.
Из этих демонстративных опытов видно, что не все вторичные половые признаки обусловлены половыми гормонами. Следует различать зависимые и независимые вторичные половые признаки. Зависимыми от мужского полового гормона у петуха оказались гребень, бородка, голос, поведение, независимым признаком — яркая окраска оперения. У курицы скромное оперение и особенности поведения являются зависимыми от половых гормонов признаками.
О влиянии половых желез на развитие вторичных половых признаков у человека можно судить на основании многочисленных наблюдений.
Известно, что кастрированный (т. е. лишенный половых желез) мужчина приобретает внешнее сходство с женщиной. Это выражается в характере оволосения, отсутствии растительности на лице, отложении жира на груди и в области таза и т. д. Если операция произведена в раннем детстве, то тембр голоса не меняется. Половое влечение у кастратов отсутствует (Слюсарев О.О. та ін., 1987)
Особенности полового поведения животных обычно обусловлены гормонами половых желез и наиболее выражены в брачный период; таковы токование птиц, «турнирные бои» самцов птиц и млекопитающих, ухаживание самцов за самками.
У человека после наступления полового созревания появляются вторичные половые признаки и половое влечение. Но у человека в отличие от животных биологический пол еще не превращает индивида в мужчину или женщину и не обеспечивает соответствующего полового поведения. Для этого требуется еще чтобы человек осознал свою половую принадлежность и усвоил соответствующее своему полу поведение. В этом заключается одна из важнейших сторон формирования личности. Ребенок обычно к 1,5— 2 годам знает свой пол и в дальнейшем в соответствии с этим направляет свое поведение. По мере полового созревания возникают сексуальные интересы, но на все поведение опять-таки большую формирующую роль оказывает социальная среда.
Биологические особенности репродукции человека. Способность к репродукции становится возможной после полового созревания. Признаком наступления полового созревания у человека являются первые поллюции (непроизвольное выделение спер-матозоонов) у мальчиков и первые менструации у девочек. Половая зрелость наступает у лиц женского пола в возрасте 16—18 лет, мужского — в 18—20 лет. Сохраняется способность к репродукции у женщин до 40—45 лет (в редких случаях — дольше), а у мужчин до старости, возможно в течение всей жизни.
Продукция гамет у представителей обоих полов совершенно различна: зрелый семенник непрерывно вырабатывает огромное количество сперма-тозоонов; половозрелый яичник периодически (один раз в лунный месяц) выделяет зрелую яйцеклетку, созревающую из числа овоцитов, которые закладываются на ранних этапах онтогенеза и запасы которых убывают в течение жизни женщины. Значение того, что овоциты закладываются еще до рождения, состоит в том, что потомство, появляющееся к концу репродуктивного периода, развивается из овоцитов, в которых за длительный срок жизни женщины могли возникнуть генетические дефекты. Следствием этого является то, что у пожилых матерей относительно чаще рождаются дети с врожденными дефектами. Необходимо подчеркнуть, что основную опасность представляет не сам возраст матери, а мутагенные факторы и факторы, влияющие на развитие плода .
У человека, как и у других организмов, имеющих внутреннее оплодотворение, мужские половые клетки при половом акте (коитусе) вводятся в половые органы женщины. Во время извержения семенной жидкости (эякуляция) у человека выделяется около 200 млн. сперматозоонов, но только один из них оплодотворяет яйцеклетку. Встреча женских и мужских гамет происходит в верхних отделах маточных труб. Потребность в колоссальном количестве сперматозоонов объясняется случайным, ненаправленным их движением, непродолжительной жизнеспособностью, массовой гибелью при продвижении по женским половым путям. В результате этого верхних отделов маточной трубы достигает лишь около 100 сперматозоонов. Перемещение их осуществляется благодаря собственной подвижности, а также в результате мышечных сокращений стенок полового тракта и направленного движения ресничек слизистой оболочки маточных труб. Спермато-зооны в женских половых путях сохраняют способность к оплодотворению в течение 1—2 суток, яйцеклетки — на протяжении суток после овуляции. Оплодотворение осуществляется обычно в течение первых 12 ч после овуляции. В процессе проникновения сперматозоона через барьер фолликулярных клеток, окружающих яйцеклетку и ее оболочку, большую роль играет акросомная реакция. Вслед за проникновением сперматозоона в яйцеклетку образуется оболочка оплодотворения, препятствующая проникновению других сперматозоонов. Зигота опускается по маточным трубам и на восьмые — десятые сутки зародыш внедряется в стенку матки. Если оплодотворение не наступило, яйцеклетка удаляется из организма (Слюсарев О.О. та ін., 1987).
Нуклеиновые кислоты
Нуклеиновые кислоты, биополимеры, состоящие из остатков фосфорной кислоты, сахаров и азотистых оснований (пуринов и пиримидинов). Имеют фундаментальное биологическое значение, поскольку содержат в закодированном виде всю генетическую информацию любого живого организма, от человека до бактерий и вирусов, передаваемую от одного поколения другому.
Нуклеиновые кислоты были впервые выделены из клеток гноя человека и спермы лосося швейцарским врачом и биохимиком Ф.Мишером между 1869 и 1871. Впоследствии было установлено, что существует два типа нуклеиновых кислот: рибонуклеиновая (РНК) и дезоксирибонуклеиновая (ДНК), однако их функции долго оставались неизвестными.
В 1928 английский бактериолог Ф.Гриффит обнаружил, что убитые патогенные пневмококки могут изменять генетические свойства живых непатогенных пневмококков, превращая последние в патогенные. В 1945 микробиолог О.Эвери из Рокфеллеровского института в Нью-Йорке сделал важное открытие: он показал, что способность к генетической трансформации обусловлена переносом ДНК из одной клетки в другую, а следовательно, генетический материал представляет собой ДНК. В 1940–1950 Дж.Бидл и Э.Тейтум из Станфордского университета (шт. Калифорния) обнаружили, что синтез белков, в частности ферментов, контролируется специфическими генами. В 1942 Т.Касперсон в Швеции и Ж.Браше в Бельгии открыли, что нуклеиновых кислот особенно много в клетках, активно синтезирующих белки. Все эти данные наводили на мысль, что генетический материал – это нуклеиновая кислота и что она как-то участвует в синтезе белков. Однако в то время многие полагали, что молекулы нуклеиновых кислот, несмотря на их большую длину, имеют слишком простую периодически повторяющуюся структуру, чтобы нести достаточно информации и служить генетическим материалом. Но в конце 1940-х годов Э.Чаргафф в США и Дж.Уайатт в Канаде, используя метод распределительной хроматографии на бумаге, показали, что структура ДНК не столь проста и эта молекула может служить носителем генетической информации.
Структура ДНК была установлена в 1953 М.Уилкинсом, Дж.Уотсоном и Ф.Криком в Англии. Это фундаментальное открытие позволило понять, как происходит удвоение (репликация) нуклеиновых кислот. Вскоре после этого американские исследователи А.Даунс и Дж.Гамов предположили, что структура белков каким-то образом закодирована в нуклеиновых кислотах, а к 1965 эта гипотеза была подтверждена многими исследователями: Ф.Криком в Англии, М.Ниренбергом и С.Очоа в США, Х.Кораной в Индии. Все эти открытия, результат столетнего изучения нуклеиновых кислот, произвели подлинную революцию в биологии. Они позволили объяснить феномен жизни в рамках взаимодействия между атомами и молекулами.
Типы и распространение. Как мы уже говорили, есть два типа нуклеиновых кислот: ДНК и РНК. ДНК присутствует в ядрах всех растительных и животных клеток, где она находится в комплексе с белками и является составной частью хромосом. У особей каждого конкретного вида содержание ядерной ДНК обычно одинаково во всех клетках, кроме гамет (яйцеклеток и сперматозоидов), где ДНК вдвое меньше. Таким образом, количество клеточной ДНК видоспецифично. ДНК найдена и вне ядра: в митохондриях («энергетических станциях» клеток) и в хлоропластах (частицах, где в растительных клетках идет фотосинтез). Эти субклеточные частицы обладают некоторой генетической автономией.
Бактерии и цианобактерии (сине-зеленые водоросли) содержат вместо хромосом одну или две крупные молекулы ДНК, связанные с небольшим количеством белка, и часто – молекулы ДНК меньшего размера, называемые плазмидами. Плазмиды несут полезную генетическую информацию, например содержат гены устойчивости к антибиотикам, но для жизни самой клетки они несущественны.
Некоторое
количество РНК присутствует в клеточном ядре, основная же ее масса находится в
цитоплазме – жидком содержимом клетки. Бльшую ее часть составляет рибосомная РНК (рРНК). Рибосомы –
это мельчайшие тельца, на которых идет синтез белка. Небольшое количество РНК
представлено транспортной РНК (тРНК), которая также участвует в белковом
синтезе. Однако оба этих класса РНК не несут информации о структуре белков –
такая информация заключена в матричной, или информационной, РНК (мРНК), на долю
которой приходится лишь небольшая часть суммарной клеточной РНК.
Генетический материал вирусов представлен либо ДНК, либо РНК, но никогда обеими одновременно (Жимулев И.Ф., 1998)
Молекулы нуклеиновых кислот содержат множество отрицательно заряженных фосфатных групп и образуют комплексы с ионами металлов; их калиевая и натриевая соли хорошо растворимы в воде. Концентрированные растворы нуклеиновых кислот очень вязкие и слегка опалесцируют, а в твердом виде эти вещества белые. Нуклеиновые кислоты сильно поглощают ультрафиолетовый свет, и это свойство лежит в основе определения их концентрации. С этим же свойством связан и мутагенный эффект ультрафиолетового света.
Длинные молекулы ДНК хрупки и легко ломаются, например при продавливании раствора через шприц. Поэтому работа с высокомолекулярными ДНК требует особой осторожности.
Химическая структура. Нуклеиновые кислоты это длинные цепочки, состоящие из четырех многократно повторяющихся единиц (нуклеотидов). Их структуру можно представить следующим образом:
Символ Ф обозначает фосфатную группу. Чередующиеся остатки сахара и фосфорной кислоты образуют сахарофосфатный остов молекулы, одинаковый у всех ДНК, а огромное их разнообразие обусловливается тем, что четыре азотистых основания могут располагаться вдоль цепи в самой разной последовательности.
Сахаром в нуклеиновых кислотах является пентоза; четыре из пяти ее углеродных атомов вместе с одним атомом кислорода образуют кольцо. Атомы углерода пентозы обозначают номерами от 1до 5. В РНК сахар представлен рибозой, а в ДНК дезоксирибозой, содержащей на один атом кислорода меньше. Фрагменты полинуклеотидных цепей ДНК и РНК показаны на рисунке.
Поскольку фосфатные группы присоединены к сахару асимметрично, в положениях 3 и 5, молекула нуклеиновой кислоты имеет определенное направление. Сложноэфирные связи между мономерными единицами нуклеиновых кислот чувствительны к гидролитическому расщеплению (ферментативному или химическому), которое приводит к высвобождению отдельных компонентов в виде небольших молекул.
Азотистые основания – это плоские гетероциклические соединения. Они присоединены к пентозному кольцу по положению 1. Более крупные основания имеют два кольца и называются пуринами: это аденин (А) и гуанин (Г). Основания, меньшие по размерам, имеют одно кольцо и называются пиримидинами: это цитозин (Ц), тимин (Т) и урацил (У). В ДНК входят основания А, Г, Т и Ц, в РНК вместо Т присутствует У. Последний отличается от тимина тем, что у него отсутствует метильная группа (CH3). Урацил встречается в ДНК некоторых вирусов, где он выполняет ту же функцию, что и тимин.
Трехмерная структура. Важной особенностью нуклеиновых кислот является регулярность пространственного расположения составляющих их атомов, установленная рентгеноструктурным методом. Молекула ДНК состоит из двух противоположно направленных цепей (иногда содержащих миллионы нуклеотидов), удерживаемых вместе водородными связями между основаниями:
Водородные связи, соединяющие основания противоположных цепей, относятся к категории слабых, но благодаря своей многочисленности в молекуле ДНК они прочно стабилизируют ее структуру. Однако если раствор ДНК нагреть примерно до 60 С, эти связи рвутся и цепи расходятся – происходит денатурация ДНК (плавление).
Обе цепи ДНК закручены по спирали относительно воображаемой оси, как будто они навиты на цилиндр. Эта структура называется двойной спиралью. На каждый виток спирали приходится десять пар оснований.
Правило комплементарности. Уотсон и Крик показали, что образование водородных связей и регулярной двойной спирали возможно только тогда, когда более крупное пуриновое основание аденин (А) в одной цепи имеет своим партнером в другой цепи меньшее по размерам пиримидиновое основание тимин (Т), а гуанин (Г) связан с цитозином (Ц). Эту закономерность можно представить следующим образом:
Соответствие А-Т и Г-Ц называют правилом комплементарности, а сами цепи - комплементарными. Согласно этому правилу, содержание аденина в ДНК всегда равно содержанию тимина, а количество гуанина – количеству цитозина. Следует отметить, что две цепи ДНК, различаясь химически, несут одинаковую информацию, поскольку вследствие комплементарности одна цепь однозначно задает другую.
Структура РНК менее упорядочена. Обычно это одноцепочечная молекула, хотя РНК некоторых вирусов состоит из двух цепей. Но даже такая РНК более гибка, чем ДНК. Некоторые участки в молекуле РНК взаимно комплементарны и при изгибании цепи спариваются, образуя двухцепочечные структуры (шпильки). В первую очередь это относится к транспортным РНК (тРНК). Некоторые основания в тРНК подвергаются модификации уже после синтеза молекулы. Например, иногда происходит присоединение к ним метильных групп (Жимулев И.Ф., 1998).
Одна из основных функций нуклеиновых кислот состоит в детерминации синтеза белков. Информация о структуре белков, закодированная в нуклеотидной последовательности ДНК, должна передаваться от одного поколения к другому, и поэтому необходимо ее безошибочное копирование, т.е. синтез точно такой же же молекулы ДНК (репликация).
Репликация и транскрипция. С химической точки зрения синтез нуклеиновой кислоты – это полимеризация, т.е. последовательное присоединение строительных блоков. Такими блоками служат нуклеозидтрифосфаты; реакцию можно представить следующим образом:
Энергия, необходимая для синтеза, высвобождается при отщеплении пирофосфата, а катализируют реакцию особые ферменты – ДНК-полимеразы.
В результате такого синтетического процесса мы получили бы полимер со случайной последовательностью оснований. Однако большинство полимераз работает только в присутствии уже существующей нуклеиновой кислоты –матрицы, диктующей, какой именно нуклеотид присоединится к концу цепи. Этот нуклеотид должен быть комплементарен соответствующему нуклеотиду матрицы, так что новая цепь оказывается комплементарной исходной. Используя затем комплементарную цепь в качестве матрицы, мы получим точную копию оригинала.
ДНК состоит из двух взаимно комплементарных цепей. В ходе репликации они расходятся, и каждая из них служит матрицей для синтеза новой цепи:
Так образуются две новые двойные спирали с той же последовательностью оснований, что и у исходной ДНК. Иногда в процессе репликации происходит «сбой», и возникают мутации .
В результате транскрипции ДНК образуются клеточные РНК (мРНК, рРНК и тРНК):
Они комплементарны одной из цепей ДНК и являются копией другой цепи, за исключением того, что место тимина у них занимает урацил. Таким способом можно получить множество РНК-копий одной из цепей ДНК.
Вся информация о строении и функционировании любого организма содержится в закодированном виде в его генетическом материале, основу которого у подавляющего числа организмов составляет ДНК. Роль ДНК заключается в хранении и передаче генетической (наследственной) информации в живых организмах. Чтобы эта информация могла передаваться от одного поколения клеток (и организмов) к другому, необходимо её точное копирование и последующее распределение её копий между потомками. Процесс, с помощью которого создаются копии молекулы ДНК, называется репликацией. Перед тем как разделится, клетки с помощью репликации создают копию своего генома, и в результате клеточного деления в каждую дочернюю клетку переходит одна копия. Благодаря этому, генетическая информация, содержащаяся в родительской клетке, не исчезает, а сохраняется и передаётся потомкам. В случае многоклеточных организмов передача этой информации осуществляется с помощью половых клеток, образующихся в результате мейотического деления и также несущих копию генома (гаплоидного). Их слияние приводит к объединению двух родительских геномов в одной клетке (зиготе). Из неё развивается организм, клетки которого несут генетическую информацию обоих родительских организмов. Таким образом, основное значение репликации заключается в снабжении потомства генетической информацией. Для обеспечения стабильности организма и вида ДНК должна реплицироваться полностью и с очень высокой точностью, что обеспечивается функционированием определённого набора белков. Замечательной особенностью ДНК является то, что она несёт гены кодирующие эти белки, и, таким образом, информация о механизме её собственного удвоения закодирована в ней самой.
Общий механизм репликации.
Модель репликации, предложенная Уотсоном и Криком. Комплиментарные цепи показаны разными цветами.
Точное самовоспроизведение ДНА возможно благодаря её особой структуре. Модель структуры ДНК была обнародована Ф.Криком и Д.Уотсоном в 1953 году. Согласно ей ДНК представляет собой длинную двухцепочечную полимерную молекулу. Мономерами являются нуклеотиды, соединённые в каждой цепи фосфодиэфирными связями. Сахарофосфатный остов молекулы, который состоит из фосфатных групп и дезоксирибозных остатков соединённых 5'-3'-фосфодиэфирными связями, образует как бы боковины винтовой лестницы, а пары оснований - её ступеньки. Две полинуклеотидные цепи навиты одна на одну, образуя двойную спираль. Вместе они удерживаются водородными связями , образующимися между комплиментарными основаниями противоположных цепей (между А и Т; G и C). Цепи молекул ДНК антипараллельны: одна из них имеет направление 5¢®3¢, другая 3¢®5¢. Последовательность мономерных единиц (дезоксирибонуклеотидов) в одной её цепи соответствует (комплиментарна) последовательности дезоксирибонуклеотидов в другой. Уотсон и Крик предположили, что для удвоения ДНК должны произойти разрыв водородных связей и расхождение цепейи что удвоение ДНК происходит путём последовательного соединения нуклеотидов на матрице материнской цепи в соответствии с правилом комплиментарности. В дальнейшем эта матричная природа механизма репликации была подтверждена многочисленными опытами. Подтверждение также получил предложенный полуконсервативный способ репликации двухцепочечной ДНК {Мезельсон, Сталь, 1958 (объект-E.coli); Тэйлор,1958( объект-Vicia faba)}.Согласно ему, в результате дупликации образуются две пары цепей, в каждой из которых только одна является родительской (консервативной), а вторая- заново синтезированной. Другие механизмы (консервативный, дисперсный) не подтвердились.
Ауторадиографический анализ, проведённый в начале 60-х гг. (Керренс,1963) на реплицирующихся хромосомах меченых 3Н-тимидином, показал наличие определённой зоны, где происходила репликация. Эта зона двигалась вдоль родительской двойной спирали. Из-за Y-образной структуры её назвали репликативной вилкой. Именно в ней и происходят основные процессы, обеспечивающие синтез ДНК. Вилки образуются в структуре, называемой репликативный пузырёк. Это области хромосомы, где две нити родительской спирали ДНК разъединяются и служат как матрицы для синтеза ДНК. Это место, где происходит инициация репликации, называется точкой начала репликации (точкой ori). Образование репликативных вилок происходит в двух направлениях (двунаправленная репликация) и их они затем движутся до встречи с другой вилкой или с концом матрицы. В некоторых случаях наблюдается движение только одной вилки, тогда как вторая является стационарной (однонаправленная репликация). У прокариот на нуклеоиде находится обычно только одна точка ori, тогда как у эукариот их много (например, у дрожжей порядка 500), расположенных на хромосоме на расстоянии 20-35 т.п.н. Участок между двумя точками ori получил название репликон. Скорость репликации у прокариот составляет порядка 1000-2000 нуклеотидов в секунду, у эукариот ниже из-за нуклеосомной организации хроматина (10-200 нуклеотидов в секунду). Скорость репликации всей молекулы ДНК (или хромосомы) зависит от числа и расположения точек ori.
Синтез ДНК в репликативной вилке проходит следующим образом. Цепи синтезируются в результате присоединения 5¢-дезоксинуклеотидильных единиц дезоксирибонуклеотидтрифосфатов к 3¢-гидроксильному концу уже имеющейся цепи (праймер, затравка). За один акт репликации праймерная цепь удлиняется на один нуклеотид, при этом одновременно удаляется один остаток пирофосфата. Цепи синтезируются в направлении 5¢®3¢ вдоль матричной цепи, ориентированной в противоположном, 3¢®5¢, направлении. Синтез Цепей в обратном направлении не происходит никогда, поэтому синтезируемые цепи в каждой репликативной вилке должны расти в противоположных направлениях. Синтез одной цепи(ведущей, лидирующей) происходит непрерывно, а другой (отстающей) импульсами. Такой механизм репликации называется полунепрерывным. Ведущая цепь растёт от 5¢- к 3¢-концу в направлении движения репликативной вилки и нуждается только в одном акте инициации. Рост отстающей цепи также идёт от 5¢- к 3¢-концу, но в направлении противоположном движению репликативной вилки. Для синтеза отстающей цепи должно произойти несколько актов инициации, в результате чего образуется множество коротких цепей, называемых фрагменты Оказаки в честь открывшего их учёного - Р.Оказаки. Размеры их: 1000-2000 нуклеотидов у прокариот, 100-200 нуклеотидов у эукариот. По мере движения репликативной вилки концы соседних фрагментов Оказаки соединяются с образованием непрерывной отстающей цепи. Механизмы инициации репликации в точке ori и при образовании фрагментов Оказаки в принципе аналогичны. В обоих случаях происходит образование РНК- затравок (длиной 10-12 нуклеотидов), комплиментарных матричной ДНК, в виде продолжения которых синтезируется новая цепь ДНК. В дальнейшем короткие вставки РНК замещаются сегментами ДНК, которые затем объединяются с образованием непрерывных цепей (Слюсарев О.О. та ін., 1987)
Основные ферменты репликации.
Репликация является ферментативным процессом, а не спонтанным как сначала предполагали Уотсон и Крик. В репликации участвуют следующие основные группы ферментов.
ДНК-полимеразы. Ферменты, которые узнают нуклеотид материнской цепи, связывают комплиментарный нуклеозидтрифосфат и присоединяют его к 3¢-концу растущей цепи 5¢-концом. В результате образуется 5¢-3¢-диэфирная связь, высвобождается пирофосфат и растущая цепь удлиняется на один нуклеотид. Таким образом, ДНК-полимераза движется от 3¢- к 5¢-концу молекулы материнской ДНК, синтезируя новую цепь. ДНК-полимеразе для работы нужен праймер (т.е. 3¢-ОН группа для присоединения нового нуклеотида) и матрица, детерминирующая присоединение нужного нуклеотида. ДНК-полимеразы помимо полимеразной активности, имеют экзонуклеазную активность, они способны к гидролизу фосфодиэфирных связей в одной цепи ДНК или на не спаренном конце дуплексной ДНК. За один акт удаляется один нуклеотид, начиная с 3¢-конца цепи (3¢-5¢-экзонуклеаза) или с 5¢-конца цепи дуплексной ДНК (5¢-3¢-экзонуклеаза). Эти различные активности присущи разным сайтам полипептидной цепи ДНК-полимераз. 3¢-5¢-экзонуклеазная активность обеспечивает контроль за присоединением каждого нуклеотида и удаление ошибочных нуклеотидов с растущего конца цепи. Все ДНК-полимеразы способы осуществлять данный тип реакции. Многие(но не все) ДНК-полимеразы обладают также 5¢-3¢-экзонуклеазной активностью. При сочетании 5¢-3¢-экзонуклеазной и полимеразной активностей происходит последовательное отщепление нуклеотидов с 5¢-конца одноцепочечного разрыва в дуплексе и удлинение цепи с 3¢-конца. В результате место разрыва перемещается по цепи в направлении от 5¢- к 3¢- концу(так называемая ник-трансляция).
ДНК-лигазы --ферменты, осуществляющие соединение цепей ДНК, т.е. катализирующие образование фосфодиэфирных связей между 5¢-фосфорильной и 3¢-гидроксильной группами соседних нуклеотидов в местах разрывов ДНК. Для образования новых фосфодиэфирных связей требуется энергия в форме АТФ либо НАД.
ДНК-геликазы (ДНК-хеликазы)—ферменты, осуществляющие расплетание двойной спирали ДНК. Для разделения цепей используется энергия АТФ. Геликазы часто функционируют в составе комплекса, осуществляющего перемещение репликативной вилки и репликацию расплетённых цепей. Для расплетания достаточно одного геликазного белка, но для того. Чтобы максимизировать скорость раскручивания. Несколько геликаз могут действовать совместно.
ДНК-топоизомеразы—ферменты, изменяющие степень сверхспиральности и тип сверхспирали. Путём одноцепочечного разрыва они создают шарнир, вокруг которого нереплецированный дуплекс ДНК, находящейся перед вилкой, может свободно вращаться. Это снимает механическое напряжение, возникающее при раскручивании двух цепей в репликативной вилке, что является необходимым условием для её непрерывного движения. Кроме того, топоизомеразы (типа II) обеспечивают разделение или образование катенанов - сцепленных кольцевых ДНК (образуются в результате репликации кольцевой ДНК), а также устранение узлов и спутанных клубков из длинной линейной ДНК. Существует два типа топоизомераз. Топоизомеразы типа I уменьшают число сверхвитков в ДНК на единицу за один акт. Эти топоизомеразы надрезают одну из двух цепей, в результате чего фланкирующие дуплексные области могут повернутся вокруг интактной цепи, и затем воссоединяют концы разрезанной цепи. Эта реакция не требует энергии АТФ, т.к. энергия фосфодиэфирной связи сохраняется благодаря тому, что тирозиновый остаток в молекуле фермента выступает то в роли акцептора, то в роли донора фосфорильного конца разрезанной цепи.
Топоизомеразы типа II вносят временные разрывы в обе комплиментарные цепи, пропускают двухцепочечный сегмент той же самой или другой молекулы ДНК через разрыв, а затем соединяют разорванные концы. В результате за один акт снимаются два положительных или отрицательных сверхвитка. Топоизомеразы типа II тоже используют тирозиновые остатки для связывания 5¢-конца каждой разорванной цепи в то время . когда другой дуплекс проходит через место разрыва.
Праймаза—фермент, обладающий РНК-полимеразной активностью; служит для образования РНК-праймеров, необходимых для инициации синтеза.
Репликация у прокариот.
Dna A связывается с четырьмя
девятимерными повторами (9-mers) и расплетает ДНК в районе тандемного набора тринадцатимеров, богатых
АТ парами (что облегчает их расплетание, т.к. между А и Т только две водородные
связи). Белок Dna C доставляет шестисубъединичный белок Dna B (геликаза) к Наиболее изучен процесс
репликации у Escherichia coli. У этой бактерии (как и ещё
некоторых исследованных видов) в области точки инициации репликации (ori C, длиной примерно 245 п.н.) находятся
повторы размером в 13 и 9 пар оснований. При инициации 10-20 молекул белка
инициации репликации матрице. На каждую из одиночных цепей садится по одному Dna B и они затем двигаются в разных
направлениях расплетая ДНК.
К геликазе присоединяется праймаза и синтезирует РНК-затравку. Две ДНК-полимеразы с помощью своих двух b-субъединиц прикрепляются к нити ДНК и начинают синтез ДНК. Расплетанию спирали способствует SSB-белки, которые связываются с одноцепочечными участками ДНК, предотвращают образование шпилек и тем самым стабилизируют расплетённый дуплекс. Сбалансированное действие топоизомеразы II (гираза), способной индуцировать отрицательные сверхвитки(см.рис.4), и топоизомеразы I, снимающей отрицательные сверхвитки(см.рис.3) регулирует степень сверхспиральности ДНК и таким образом влияет на скорость движения репликативной вилки.
У прокариот обнаружено три типа ДНК-полимераз. Их свойства приведены ниже.
Синтез ДНК в репликативной вилке.
ДНК-полимераза III осуществляет удлинение лидирующей цепи, а также удлинение РНК-праймеров с образованием фрагментов Оказаки длиной от 1000 до 2000 нуклеотидов. Две ДНК-полимеразы связаны между собой субъединицей. Удаление сегментов РНК с 5¢-конца каждого фрагмента Оказаки и заполнение пробелов между ними катализируетcя ДНК-полимеразой I ,способной удлинять цепь и осуществлять ник-трансляцию. Когда растущий 3¢-гидроксильный конец каждого фрагмента Оказаки доходит до 5¢ –дезоксинуклеотидного конца соседнего фрагмента, вступает в действие ДНК- лигаза и образуется непрерывная отстающая цепь. Роль ДНК-полимеразы II в репликации не выяснена.
Обнаружен специальный белок терминации – Tus-белок. Он задерживает геликазу, в результате чего прекращается расплетение нити и происходит терминация репликации.
Репликация у эукариот.
Как и в случае с E.coli исследования репликации в эукариотических клетках сначала были сосредоточены на характеристике различных ДНК-полимераз.
Следующим этапом стало создание систем для репликации хромосом вирусов животных in vitro. В результате в настоящее время хромосома вируса SV40 может быть реплицирована in vitro с использованием всего лишь восьми компонентов клеток млекопитающих. По своим свойствам эти белки напоминают белки необходимые для репликации в E.coli. Репликация ДНК эукариот также идёт в двух направлениях; для синтеза ДНК нужны праймеры синтезируемые праймазой; синтез лидирующей цепи непрерывен, а отстающей прерывистый. Как показано на рис.7, инициация репликации ДНК вируса SV40 происходит в уникальном сайте, точке начала репликации, путём связывания кодируемого вирусом белка, называемого T antigen, или Tag.
Этот полифункциональный белок расплетает дуплекс ДНК благодаря своей геликазной активности. Расплетание дуплекса требует также наличия АТФ и белка репликации A (RPA), кодируемого клеткой-хозяином и обладающего способностью связываться с однонитчатой ДНК (как SSB-белки в E.coli). Одна молекула ДНК-полимеразы α (Pol α) прочно связывается с праймазой и затем связывается с образовавшейся однонитчатой ДНК. Праймаза образует РНК-праймеры, которые затем удлиняются на небольшую длину Pol α , образуя первую часть ведущих цепей, которые растут от точки ori в противоположных направлениях. Активность Pol α стимулируется фактором репликации C (RFC).
Затем c 3-концамb удлинённых Pol α РНК-праймеров связывается PCNA (proliferating cell nuclear antigen) и замещает Pol α на обоих растущих ведущих цепях, прерывая их синтез. На следующем этапе Pol δ связывается с PCNA на 3¢-концах растущих цепей. PCNA повышает процессивность Pol δ так, что полимераза может непрерывно продолжать синтез ведущих цепей. Таким образом, функция PCNA аналогична функции β-субъединицы полимеразы III E.coli, т.к. оба белка образуют сходные структуры (“кольца”), охватывающие ДНК и способствующие удержанию полимераз на цепи ДНК. Они, однако, имеют различные первичные структуры; кроме того PCNA-тример, а не димер как β-субъединица полимеразы III E.coli.
Комплекс праймаза- Pol α. садится на цепь, являющуюся матрицей для отстающей цепи и вместе с RFC осуществляют синтез запаздывающей цепи.
Наконец, как и в E.coli топоизомеразы снимают механическое напряжение, возникающее при расплетании ДНК в репликативной вилке, и участвуют в разделении двух дочерних хромосом. Однако топоизомеразы эукариот имеют некоторые отличия от прокариотических: 1.топоизомеразы I эукариот взаимодействуют с 3¢-фосфорильным концом разорванной цепи (прокариотические --с 5¢-фосфорильным концом) 2. топоизомеразы I эукариот устраняют как отрицательные, так и положительные сверх витки (прокариотические—только отрицательные) 3.топоизомеразы II эукариот не способны индуцировать образование отрицательных сверхвитков (как это делает в релаксированных кольцевых ДНК гираза бактерий).
Итак, получено много данных об эукариотических белках, осуществляющих репликацию ДНК вируса SV40 in vitro. Как упоминалось ранее, инициация репликации ДНК SV40 in vitro требует наличие вирусного белка - T антигена. Для инициации же репликации у эукариот хромосомной ДНК необходим целый комплекс белков. Так, у дрожжей с сайтом ori в течение всего жизненного цикла связан комплекс из 6 разных белков (ORC), к которому в интерфазе присоединяется ещё целый ряд белков и образованный комплекс инициирует процесс репликации. Такие же белки синтезируются всеми эукариотическими клетками (Слюсарев О.О. та ін., 1987)
Хромосомы эукариот линейны и их концы представлены теломерами, состоящими из повторяющихся олигомерных последовательностей; у человека это 25-200 копий последовательности TTAGGG. Наличие специальной области на концах эукариотических хромосом абсолютно необходимо. Дело в том, что при удалении последнего РНК-праймера отстающей цепи, на 5-конце этой цепи остаётся брешь, которую не способна заполнить ни одна из ДНК-полимераз, т.к. всем им для работы необходим праймер со свободным 3-ОН концом. Без существования какого-либо специального механизма дочерняя нить ДНК, синтезируемая на отстающей цепи, укорачивалась бы с каждым клеточным делением. Ферментом, предотвращающим такое укорочение, является теломераза. Этот фермент имеет ассоциированную с ним короткую нить РНК, комплиментарную шестичленной последовательности, повторяющейся в теломере и служащую матрицей для синтеза ДНК теломеров. Благодаря этому механизму эукариотические хромосомы могут реплицироваться полностью. Репликация в большинство соматических клеток проходит без участия теломеразы, поэтому с каждым делением длина хромосом клетки укорачивается и после определённого числа делений хромосомы утрачивают теломеры и начинают терять смысловые участки , что приводит к гибели клетки. Теломераза активна в половых, раковых клетках и клетках одноклеточных эукариот.