Тема: Алканы и циклоалканы
План сравнительного анализа классов органических соединений.
1. Общая формула, гомологический ряд, номенклатура и изомерия органических соединений.
2. Методы получения : промышленные и лабораторные.
3. Физические свойства соединений.
4. Строение вещества : состояние гибридизации атома Карбона (валентное состояние атома Карбона), пространственная направленность гибридизирующих орбиталей, длина и энергия связи. Взаимосвязь строения и химических свойств – преобладающее направление прохождения реакций.
5. Химические свойства: общие для разных классов органических соединений и специфические для данного класса соединений.
6. Применение представителей данного класса органических соединений в медицине и фармации.
1. ВВЕДЕНИЕ
- Углеводороды – органические соединения, в состав которых входят только два элемента: углерод и водород.
Например: CH4, C2H6, C3H6, C6H6, C8H10 и т.п.
В общем виде – СxHy.
Углеводороды имеют важное научное и практическое значение. Во-первых, представления о строении и свойствах этих веществ служат основой для изучения органических соединений других классов, т.к. молекулы любых органических веществ содержат углеводородные фрагменты. Во-вторых, знание свойств углеводородов позволяет понять исключительную ценность этих соединений как исходного сырья для синтеза самых разнообразных органических веществ, широко используемых человеком.
Углеводороды содержатся в земной коре в составе нефти, каменного и бурого углей, природного и попутного газов, сланцев и торфа. Запасы этих полезных ископаемых на Земле не безграничны. Однако до настоящего времени они расходуются главным образом в качестве топлива (двигатели внутреннего сгорания, тепловые электростанции, котельные) и лишь незначительная часть используется как сырье в химической промышленности. Так, до 85% всей добываемой нефти идет на получение горюче-смазочных материалов и лишь около 15% применяется как химическое сырье. Поэтому важнейшей задачей является поиск и разработка альтернативных источников энергии, которые позволят более рационально использовать углеводородное сырье.
1.1. Многообразие углеводородов
В силу особенностей строения и свойств углерода (часть I, раздел 1.1) его соединения с водородом весьма многочисленны и разнообразны. Это обусловлено рядом структурных факторов:
- атомы углерода способны соединяться между собой в цепи различного строения:
см. также рис.1.1.2. (52573 байт)
- даже при одинаковом количестве атомов углерода в молекулах углеводороды могут отличаться числом атомов водорода,
например: C6H14, C6H12, C6H10, C6H8, C6H6;
или другой пример: молекулы с 4-мя атомами углерода могут
содержать от 10-ти до 2-х атомов водорода:
- одному и тому же элементному составу молекул (одной молекулярной формуле) может соответствовать несколько различных веществ – изомеров. Например:
1.2. Классификация углеводородов
Классификацию углеводородов проводят по следующим структурным признакам, определяющим свойства этих соединений:
1. строение углеродной цепи (углеродного скелета);
2. наличие в цепи кратных связей С=С и СC (степень насыщенности).
1. В зависимости от строения углеродной цепи углеводороды подразделяют на две группы:
- ациклические или алифатические,т.е. “жирные” (от греческого слова “алейфар” – “жир”, т.к. впервые структуры с длинными углеродными цепями были обнаружены в составе жиров);
- циклические.
Открытая (незамкнутая) цепь алифатических углеводородов может быть неразветвленной или разветвленной. Углеводороды с неразветвленной углеродной цепью называют нормальными (н-) углеводородами.
Среди циклических углеводородов выделяют:
· алициклические (т.е. алифатические циклические);
· ароматические (арены).
В этом случае классификационным признаком служит строение цикла.
К ароматическим углеводородам относят соединения, содержащие один или несколько циклов С6Н6 (структура бензола).
2. По степени насыщенности различают:
- насыщенные (предельные) углеводороды (алканы и циклоалканы), в которых имеются только простые связи С-С и отсутствуют кратные связи;
- ненасыщенные (непредельные), содержащие наряду с одинарными связями С-С двойные и/или тройные связи (алкены, алкадиены, алкины, циклоалкены, циклоалкины).
Следует заметить, что хотя по составу бензол С6Н6 формально соответствует ненасыщенным циклическим углеводородам (его молекулу часто изображают как шестичленный цикл с тремя двойными связями), по свойствам это соединение
резко отличается от ненасыщенных веществ из-за делокализации кратных связей (часть I, раздел 4.10). Поэтому соединения ряда бензола относят к самостоятельной группе ароматических углеводородов (аренов).
2.АЛКАНЫ (предельные углеводороды, парафины)
- Алканы – алифатические (ациклические) предельные углеводороды, в которых атомы углерода связаны между собой простыми (одинарными) связями в неразветвленные или разветвленные цепи.
Алканы – название предельных углеводородов по международной номенклатуре.
Парафины– исторически сложившееся название, отражающее свойства этих соединений (от лат. parrum affinis – имеющий мало сродства, малоактивный).
Предельными, или насыщенными, эти углеводороды называют в связи с полным насыщением углеродной цепи атомами водорода.
Простейшие представители алканов:
Модели молекул:
При сравнении этих соединений видно, что они отличаются друг от друга на группу -СН2– (метилен). Добавляя к пропану еще одну группу -СН2–, получим бутан С4Н10, затем алканы С5Н12, С6Н14 и т.д.
Теперь можно вывести общую формулу алканов. Число атомов углерода в ряду алканов примем за n, тогда число атомов водорода составит величину 2n+2. Следовательно, состав алканов соответствует общей формуле CnH2n+2.
Поэтому часто используется такое определение:
- Алканы – углеводороды, состав которых выражается общей формулой CnH2n+2, где n – число атомов углерода.
2.1. Гомологический ряд алканов
Алканы, имея общую формулу СnH2n+2, представляют собой ряд родственных соединений с однотипной структурой, в котором каждый последующий член отличается от предыдущего на постоянную группу атомов (-CH2-). Такая последовательность соединений называется гомологическим рядом (от греч. homolog – сходный), отдельные члены этого ряда – гомологами, а группа атомов, на которую различаются соседние гомологи, – гомологической разностью.
Гомологический ряд алканов легко составить, прибавляя каждый раз к предыдущей цепочке новый атом углерода и дополняя его оставшиеся валентности до 4-х атомами водорода. Другой вариант – добавление в цепь группы -СН2– (аним. 2.1.1, 43561 байт):
CH4 или Н-СН2-Н – первый член гомологического ряда – метан (содержит 1 атом C);
CH3-CH3 или Н-СН2-СН2-Н – 2-й гомолог – этан (2 атома С);
CH3-CH2-CH3 или Н-СН2-СН2-СН2 -Н – 3-й гомолог – пропан (3 атома С);
CH3-CH2-CH2-CH3 или Н-СН2-СН2-СН2-СН2-Н – бутан (4 атома С).
Суффикс -ан является характерным для названия всех алканов. Начиная с пятого гомолога, название алкана образуется из греческого числительного, указывающего число атомов углерода в молекуле, и суффикса -ан: пентан С5Н12, гексан С6Н14, гептан С7Н16, октан
С8Н18, нонан С9Н20, декан С10Н22 и т.д.
Гомологи отличаются молекулярной массой, и следовательно, физическими характеристиками (рис.2.1.1). С увеличением числа углеродных атомов в молекуле алкана (с ростом молекулярной массы) в гомологическом ряду наблюдается закономерное изменение физических свойств гомологов (переход количества в качество): повышаются температуры кипения и плавления, увеличивается плотность. Алканы от СН4 до С4Н10– газы, от С5Н12 до С17Н36 – жидкости, далее – твердые вещества.
Имея одинаковый качественный состав и однотипные химические связи, гомологи обладают сходными химическими свойствами. Поэтому, зная химические свойства одного из членов гомологического ряда, можно предсказать химическое поведение и других членов этого ряда.
Для получения гомологов используются общие методы синтеза.
2.2. Строение алканов
Химическое строение (порядок соединения атомов в молекулах) простейших алканов – метана, этана и пропана – показывают их структурные формулы, приведенные в разделе 2. Из этих формул видно, что в алканах имеются два типа химических связей:
С–С и С–Н.
Связь С–С является ковалентной неполярной. Связь С–Н – ковалентная слабополярная, т.к. углерод и водород близки по электроотрицательности (2.5 – для углерода и 2.1 – для водорода). Образование ковалентных связей в алканах за счет общих электронных пар атомов углерода и водорода можно показать с помощью электронных формул:
Электронные и структурные формулы отражают химическое строение, но не дают представления о пространственном строении молекул, которое существенно влияет на свойства вещества.
Пространственное строение, т.е. взаимное расположение атомов молекулы в пространстве, зависит от направленности атомных орбиталей (АО) этих атомов. В углеводородах главную роль играет пространственная ориентация атомных орбиталей углерода, поскольку сферическая 1s-АО атома водорода лишена определенной направленности.
Пространственное расположение АО углерода в свою очередь зависит от типа его гибридизации (часть I, раздел 4.3). Насыщенный атом углерода в алканах связан с четырьмя другими атомами. Следовательно, его состояние соответствует sp3-гибридизации (часть I, раздел 4.3.1). В этом случае каждая из четырех sp3-гибридных АО углерода участвует в осевом (s-) перекрывании с s-АО водорода или с sp3-АО другого атома углерода, образуя s-связи С-Н или С-С.
Четыре s-связи углерода направлены в пространстве под тетраэдрическим углом 109о28′. Поэтому молекула простейшего представителя алканов – метана СН4 – имеет форму тетраэдра, в центре которого находится атом углерода, а в вершинах – атомы водорода:
Валентный угол Н-С-Н равен 109о28’. Пространственное строение метана можно показать с помощью объемных (масштабных) и шаростержневых моделей.
См. также виртуальную (VRML) модель молекулы метана
(2 камеры, 7199 байт).
Для записи удобно использовать пространственную (стереохимическую) формулу.
В молекуле следующего гомолога – этана С2Н6 – два тетраэдрических sp3– атома углерода образуют более сложную пространственную конструкцию:
Для молекул алканов, содержащих свыше 2-х атомов углерода, характерны изогнутые формы. Это можно показать на примере н-бутана (VRML-модель, 10574 байт) или н-пентана:
2.3. Изомерия алканов
- Изомерия – явление существования соединений, которые имеют одинаковый состав (одинаковую молекулярную формулу), но разное строение. Такие соединения называются изомерами.
Различия в порядке соединения атомов в молекулах (т.е. в химическом строении) приводят к структурной изомерии. Строение структурных изомеров отражается структурными формулами. В ряду алканов структурная изомерия проявляется при содержании в цепи 4-х и более атомов углерода, т.е. начиная с бутана С4Н10.
Если в молекулах одинакового состава и одинакового химического строения возможно различное взаимное расположение атомов в пространстве, то наблюдается пространственная изомерия (стереоизомерия). В этом случае использование структурных формул недостаточно и следует применять модели молекул или пространственные (стереохимические) формулы.
Алканы, начиная с этана С2Н6, существуют в различных пространственных формах, обусловленных внутримолекулярным вращением по s-связям С–С, и проявляют так называемую поворотную изомерию.
Кроме того, при наличии в молекуле 7-ми и более углеродных атомов, возможен еще один вид пространственной изомерии, когда два изомера относятся друг к другу как предмет и его зеркальное изображение (подобно тому, как левая рука относится к правой). Такие различия в строении молекул называют зеркальной, или оптической, изомерией.
2.3.1. Структурная изомерия алканов
Причиной проявления структурной изомерии в ряду алканов является способность атомов углерода образовывать цепи различного строения. Этот вид структурной изомерии называется изомерией углеродного скелета.
Например, алкан состава C4H10 может существовать в виде двух структурных изомеров:
а алкан С5Н12 – в виде трех структурных изомеров, отличающихся строением углеродной цепи:
С увеличением числа атомов углерода в составе молекул увеличиваются возможности для разветвления цепи, т.е. количество изомеров растет с ростом числа углеродных атомов.
Структурные изомеры отличаются физическими свойствами. Алканы с разветвленным строением из-за менее плотной упаковки молекул и, соответственно, меньших межмолекулярных взаимодействий, кипят при более низкой температуре, чем их неразветвленные изомеры.
При выводе структурных формул изомеров используют следующие приемы.
Приемы построения структурных формул изомеров
Рассмотрим на примере алкана С6Н14.
1. Сначала изображаем молекулу линейного изомера (ее углеродный скелет)
(1)
2. Затем цепь сокращаем на 1 атом углерода и этот атом присоединяем к какому-либо атому углерода цепи как ответвление от нее, исключая крайние положения:
(2) или (3)
Если присоединить углеродный атом к одному из крайних положений, то химическое строение цепи не изменится:
Кроме того, нужно следить, чтобы не было повторов. Так, структура идентична структуре (2).
3. Когда все положения основной цепи исчерпаны, сокращаем цепь еще на 1 атом углерода:
Теперь в боковых ответвлениях разместятся 2 атома углерода. Здесь возможны следующие сочетания атомов:
(4) и (5)
Боковой заместитель может состоять из 2-х или более последовательно соединенных атомов углерода, но для гексана изомеров с такими боковыми ответвлениями не существует, и структура
идентична структуре (3).
Боковой заместитель – С–С можно размещать только в цепи, содержащей не меньше 5-ти углеродных атомов и присоединять его можно только к 3-му и далее атому от конца цепи.
4. После построения углеродного скелета изомера необходимо дополнить все углеродные атомы в молекуле связями с водородом, учитывая, что углерод четырехвалентен.
Итак, составу С6Н14 соответствует 5 изомеров:
1)
2)
3)
4)
5)
2.3.2. Поворотная изомерия алканов
Характерной особенностью s-связей является то, что электронная плотность в них распределена симметрично относительно оси, соединяющей ядра связываемых атомов (цилиндрическая или вращательная симметрия). Поэтому вращение атомов вокруг s-связи не будет приводить к ее разрыву. В результате внутримолекулярного вращения по s-связям С–С молекулы алканов, начиная с этана С2Н6, могут принимать разные геометрические формы.
Различные пространственные формы молекулы, переходящие друг в друга путем вращения вокруг s-связей С–С, называют конформациями или поворотными изомерами (конформерами).
Поворотные изомеры молекулы представляют собой энергетически неравноценные ее состояния. Их взаимопревращение происходит быстро и постоянно в результате теплового движения. Поэтому поворотные изомеры не удается выделить в индивидуальном виде, но их существование доказано физическими методами. Некоторые конформации более устойчивы (энергетически выгодны) и молекула пребывает в таких состояниях более длительное время.
Рассмотрим поворотные изомеры на примере этана Н3С–СН3:
См. также VRML-модель (14857 байт).
При вращении одной группы СН3 относительно другой возникает множество неодинаковых форм молекулы, среди которых выделяют две характерные конформации (А и Б), отличающиеся поворотом на 60°:
Эти поворотные изомеры этана отличаются расстояниями между атомами водорода, соединенными с разными атомами углерода.
В конформации А атомы водорода сближены (заслоняют друг друга), их отталкивание велико, энергия молекулы максимальна. Такая конформация называется “заслоненной”, она энергетически невыгодна и молекула переходит в конформацию Б, где расстояния между атомами Н у разных атомов углерода наибольшее и, соответственно, отталкивание минимально. Эта конформация называется “заторможенной”, т.к. она энергетически более выгодна и молекула находится в этой форме больше времени.
С удлинением углеродной цепи число различимых конформаций увеличивается. Так, вращение по центральной связи в н-бутане
приводит к четырем поворотным изомерам (аним.2.3.2.3, 45781 байт):
Наиболее устойчивым из них является конформер IV, в котором группы СН3 максимально удалены друг от друга. Зависимость потенциальной энергии н-бутана от угла вращения на рис.2.3.2.4 (45781 байт).
В случае длинных цепных молекул полимеров обратимое изменение конформаций приводит к качественно новому свойству – гибкости макромолекул (часть VI, раздел 4.1).
2.3.3. Зеркальная (оптическая) изомерия
Если атом углерода в молекуле связан с четырьмя различными атомами или атомными группами, например:
то возможно существование двух соединений с одинаковой структурной формулой, но отличающихся пространственным строением. Молекулы таких соединений относятся друг к другу как предмет и его зеркальное изображение и являются пространственными изомерами.
Изомерия этого вида называется оптической или зеркальной, изомеры – зеркальными изомерами или оптическими антиподами:
См. также аним. 2.3.3.1 (73519 байт) и
виртуальные (VRML) модели зеркальных изомеров (8952 байт)
Молекулы оптических изомеров несовместимы в пространстве (как левая и правая руки), в них отсутствует плоскость симметрии.
Таким образом, оптическими изомерами называются пространственные изомеры, молекулы которых относятся между собой как предмет и несовместимое с ним зеркальное изображение.
Оптические изомеры имеют одинаковые физические и химические свойства, но различаются отношением к поляризованному свету. Такие изомеры обладают оптической активностью (один из них вращает плоскость поляризованного света влево, а другой – на такой же угол вправо). Различия в химических свойствах наблюдаются только в реакциях с оптически активными реагентами.
Оптическая изомерия проявляется в органических веществах различных классов и играет очень важную роль в химии природных соединений.
2.4. Номенклатура
- Номенклатура органических соединений – система правил, позволяющих дать однозначное название каждому индивидуальному веществу.
Это язык химии, который используется для передачи в названиях соединений их строения. Соединению определенного строения соответствует одно систематическое название, и по этому названию можно представить строение соединения (его структурную формулу).
В настоящее время общепринятой является систематическая номенклатура ИЮПАК (IUPAC – International Union of the Pure and Applied Chemistry – Международный союз теоретической и прикладной химии).
Наряду с систематическими названиями используются также тривиальные (обыденные) названия, которые связаны с характерным свойством вещества, способом его получения, природным источником, областью применения и т.д., но не отражают его строения.
Для применения номенклатуры ИЮПАК необходимо знать названия и строение определенных фрагментов молекул – органических радикалов.
Термин “органический радикал” является структурным понятием и его не следует путать с термином “свободный радикал”, который характеризует атом или группу атомов с неспаренным электроном.
2.4.1. Радикалы в ряду алканов
Если от молекулы алкана “отнять” один атом водоpода, то обpазуется одновалентный “остаток” – углеводоpодный pадикал (R–).
Общее название одновалентных радикалов алканов – алкилы – обpазовано заменой суффикса –ан на –ил:
метан – метил, этан – этил, пpопан – пpопил и т.д.
Одновалентные pадикалы выpажаются общей фоpмулой СnН2n+1.
Двухвалентный радикал получается, если удалить из молекулы 2 атома водорода. Например, из метана можно образовать двухвалентный радикал –СН2– метилен. В названиях таких радикалов используется суффикс –илен.
Названия радикалов, особенно одновалентных, используются при образовании названий разветвленных алканов и других соединений. Такие радикалы можно рассматривать как составные части молекул, их конструкционные детали. Чтобы дать название соединению необходимо представить, из каких “деталей”-радикалов составлена его молекула.
Метану СН4 соответствует один одновалентный радикал метил СН3.
От этана С2Н6 можно произвести также только один радикал – этил
– CH2– CH3 (или – C2H5).
Пропану СН3–СН2–СН3 соответствуют два изомерных радикала
– С3Н7:
Радикалы подразделяются на первичные, вторичные и третичные в зависимости от того, у какого атома углерода (первичного, вторичного или третичного) находится свободная валентность. По этому признаку н-пропил относится к первичным радикалам, а изопропил – к вторичным.
Двум алканам С4Н10 (н-бутан и изобутан) соответствует 4 одновалентных радикала –С4Н9:
– от н-бутана производятся н-бутил (первичный радикал) и втор-бутил (вторичный радикал), – от изобутана – изобутил (первичный радикал) и трет-бутил (третичный радикал).
Таким образом, в ряду радикалов также наблюдается явление изомерии, но при этом число изомеров больше, чем у соответствующих алканов.
Одновалентные радикалы – фрагменты “конструкций” молекул различных органических соединений.
Конструирование молекул алканов из радикалов
Например, молекулу
можно “собрать” тремя способами из различных пар одновалентных радикалов:
Такой подход используется в некоторых синтезах органических соединений, например:
где R – одновалентный углеводородный радикал (реакция Вюрца)
2.4.2. Правила построения названий алканов по систематической международной номенклатуре ИЮПАК
1. Для простейших алканов (С1-С4) приняты тpивиальные названия:
метан, этан, пpопан, бутан, изобутан.
2. Начиная с пятого гомолога, названия нормальных (неpазветвленных) алканов стpоят в соответствии с числом атомов углеpода, используя гpеческие числительные и суффикс -ан: пентан, гексан, гептан, октан, нонан, декан и т.д.
3. В основе названия разветвленного алкана лежит название входящего в его конструкцию нормального алкана с наиболее длинной углеродной цепью. При этом углеводоpод с pазветвленной цепью pассматpивают как пpодукт замещения атомов водоpода в ноpмальном алкане углеводоpодными pадикалами.
Например, алкан
рассматривается как замещенный пентан, в котором два атома водорода замещены на радикалы –СН3 (метил).
Порядок построения названия разветвленного алкана
- Выбрать в молекуле главную углеродную цепь. Во-первых, она должна быть самой длинной. Во-вторых, если имеются две или более одинаковые по длине цепи, то из них выбирается наиболее разветвленная.
Например, в молекуле есть 2 цепи с одинаковым числом (7) атомов С (выделены цветом):
В случае (а) цепь имеет 1 заместитель, а в (б) – 2. Поэтому следует выбрать вариант (б).
2. Пронумеровать атомы углерода в главной цепи так, чтобы атомы С, связанные с заместителями, получили возможно меньшие номера. Поэтому нумерацию начинают с ближайшего к ответвлению конца цепи. Например:
3. Назвать все радикалы (заместители), указав впереди цифры, обозначающие их местоположение в главной цепи. Если есть несколько одинаковых заместителей, то для каждого из них через запятую записывается цифра (местоположение), а их количество указывается приставками ди-, три-, тетра-, пента– и т.д. (например, 2,2-диметил или 2,3,3,5-тетраметил).
4. Названия всех заместителей расположить в алфавитном порядке (так установлено последними правилами ИЮПАК).
5. Назвать главную цепь углеродных атомов, т.е. соответствующий нормальный алкан.
Таким образом, в названии разветвленного алкана
корень+суффикс – название нормального алкана
(греч. числительное+суффикс “ан”),
приставки – цифры и названия углеводородных радикалов.
Пример построения названия:
Другой пример последовательного построения названия по шагам приведен в разделе 2.4.3.
2.5. Химические свойства алканов
- Химические свойства любого соединения определяются его строением, т.е. природой входящих в его состав атомов и характером связей между ними.
Исходя из этого положения и справочных данных о связях С–С и С–Н, попробуем предсказать, какие реакции характерны для алканов.
Во-первых, предельная насыщенность алканов не допускает реакций присоединения, но не препятствует реакциям разложения, изомеризации и замещения (см. I часть, раздел 6.4 “Типы реакций”).
Во-вторых, симметричность неполярных С–С и слабополярных С–Н ковалентных связей (см. значения дипольных моментов в табл. 2.5.1) предполагает их гомолитический (симметричный) разрыв на свободные радикалы (часть I, раздел 6.4.3).
Следовательно, для реакций алканов характерен радикальный механизм.
Поскольку гетеролитический разрыв связей С–С и С–Н в обычных условиях не происходит, то в ионные реакции алканы практически не вступают. Это проявляется в их устойчивости к действию полярных реагентов (кислот, щелочей, окислителей ионного типа: КMnO4,
К2Сr2O7 и т.п.). Такая инертность алканов в ионных реакциях и послужила ранее основанием считать их неактивными веществами и назвать парафинами.
Итак, алканы проявляют свою реакционную способность в основном в радикальных реакциях.
Условия проведения таких реакций: повышенная температура (часто реакцию проводят в газовой фазе), действие света или радиоактивного излучения, присутствие соединений – источников свободных радикалов (инициаторов), неполярные растворители.
В зависимости от того, какая связь в молекуле разрывается в первую очередь, реакции алканов подразделяются на следующие типы.
С разрывом связей С–С происходят реакции разложения (крекинг алканов) и изомеризации углеродного скелета.
По связям С–Н возможны реакции замещения атома водорода или его отщепления (дегидрирование алканов).
Кроме того, атомы углерода в алканах находятся в наиболее восстановленной форме (степень окисления углерода, например, в метане равна –4, в этане –3 и т.д.) и в присутствии окислителей в определенных условиях будут происходить реакции окисления алканов с участием связей С–С и С–Н.
2.5.1. Крекинг алканов
- Крекинг – реакции расщепления углеродного скелета крупных молекул при нагревании и в присутствии катализаторов .
При температуре 450 – 700°С алканы распадаются за счет разрыва связей С–С (более прочные связи С–Н при такой температуре сохраняются) и образуются алканы и алкены с меньшим числом углеродных атомов.
Например:
C6H14 ® C2H6 + C4H8
Распад связей происходит гомолитически с образованием свободных радикалов:
Свободные радикалы очень активны. Один из них (например, этил) отщепляет атомарный водород Н· от другого (н-бутила) и превращается в алкан (этан). Другой радикал, став двухвалентным, превращается в алкен (бутен-1) за счет образования p–связи при спаривании двух электронов у соседних атомов:
Разрыв С–С–связи возможен в любом случайном месте молекулы. Поэтому образуется смесь алканов и алкенов с меньшей, чем у исходного алкана, молекулярной массой.
В общем виде этот процесс можно выразить схемой:
CnH2n+2 ® CmH2m + CpH2p+2, где m + p = n
При более высокой температуре (свыше 1000°С) происходит разрыв не только связей С–С, но и более прочных связей С–Н. Например, термический крекинг метана используется для получения сажи (чистый углерод) и водорода:
СН4 ® C + 2H2
2.5.2. Изомеризация алканов
Алканы нормального строения под влиянием катализаторов и при нагревании способны превращаться в разветвленные алканы без изменения состава молекул, т.е. вступать в реакции изомеpизации. В этих pеакциях участвуют алканы, молекулы которых содержат не менее 4-х углеродных атомов.
Например, изомеризация н-пентана в изопентан (2-метилбутан) происходит при 100°С в присутствии катализатора хлорида алюминия:
Исходное вещество и продукт реакции изомеризации имеют одинаковые молекулярные формулы и являются структурными изомерами (изомерия углеродного скелета).
2.5.3. Дегидрирование алканов
При нагревании алканов в присутствии катализаторов происходит их каталитическое дегидрирование за счет разрыва связей С-Н и отщепления атомов водорода от соседних углеродных атомов. При этом алкан превращается в алкен с тем же числом углеродных атомов в молекуле:
Наряду с бутеном-2 в этой реакции образуется также бутен-1.
При t = 1500°С происходит межмолекулярное дегидрирование метана по схеме:
Эта реакция используется для промышленного получения ацетилена.
2.5.4. Реакции окисления алканов
В органической химии реакции окисления и восстановления рассматриваются как реакции, связанные с потерей и приобретением органическим соединением атомов водорода и кислорода. Эти процессы, естественно, сопровождаются изменением степеней окисления атомов (часть I, раздел 6.4.1.5).
Окисление органического вещества – введение в его состав кислорода и (или) отщепление водорода. Восстановление – обратный процесс (введение водорода и отщепление кислорода). Учитывая состав алканов (СnH2n+2), можно сделать вывод о их неспособности вступать в реакции восстановления, но возможности участвовать в реакциях окисления.
Алканы – соединения с низкими степенями окисления углерода (рис. 2.5.4.1) и в зависимости от условий реакции они могут окисляться с образованием различных соединений.
Рис. 2.5.4.1. Степени окисления атомов углерода
При обычной температуре алканы не вступают в реакции даже с сильными окислителями (Н2Cr2O7, KMnO4 и т.п.). При внесении в открытое пламя алканы горят. При этом в избытке кислорода происходит их полное окисление до СО2, где углерод имеет высшую степень окисления +4, и воды. Горение углеводородов приводит к разрыву всех связей С–С и С–Н и сопровождается выделением большого количества тепла (экзотермическая реакция).
Примеры:
Низшие гомологи (метан, этан, пропан, бутан) образуют с воздухом взрывоопасные смеси, что необходимо учитывать при их использовании.
Процесс горения углеводородов широко используется для получения энергии (в двигателях внутреннего сгорания, в тепловых электростанциях и т.п.).
Уравнение реакции горения алканов в общем виде:
Из этого уравнения следует, что с увеличением числа углеродных атомов (n) в алкане увеличивается количество кислорода, необходимого для его полного окисления. При горении высших алканов (n >>1) кислорода, содержащегося в воздухе, может оказаться недостаточно для их полного окисления до СО2. Тогда образуются продукты частичного окисления:
угарный газ СО (степень окисления углерода +2),
сажа (мелкодисперсный углерод, нулевая степень окисления). Поэтому высшие алканы горят на воздухе коптящим пламенем, а выделяющийся попутно токсичный угарный газ (без запаха и цвета) представляет опасность для человека.
Горение метана при недостатке кислорода происходит по уравнениям:
Последняя реакция используется в промышленности для получения сажи из природного газа, содержащего 80-97% метана. Частичное окисление алканов при относительно невысокой температуре и с применением катализаторов сопровождается разрывом только части связей С–С и С–Н и используется для получения ценных продуктов: карбоновых кислот, кетонов, альдегидов, спиртов. Например, при неполном окислении бутана (разрыв связи С2–С3) получают уксусную кислоту:
Высшие алканы (n>25) под действием кислорода воздуха в жидкой фазе в присутствии солей марганца превращаются в смесь карбоновых кислот со средней длиной цепи С12–С18, которые используются для получения моющих средств и поверхностно-активных веществ.
Важное значение имеет реакция взаимодействия метана с водяным паром, в результате которой образуется смесь оксида углерода (II) с водородом – “синтез-газ”:
Эта реакция используется для получения водорода. Синтез-газ служит сырьем для получения различных углеводородов.
2.5.5. Реакции замещения
В молекулах алканов связи C-Н пространственно более доступны для атаки другими частицами, чем менее прочные связи C-C. В определенных условиях происходит разрыв именно С-Н-связей и осуществляется замена атомов водорода на другие атомы или группы атомов.
1. Галогенирование
Галогенирование алканов – реакция замещения одного или более атомов водорода в молекуле алкана на галоген. Продукты реакции называют галогеналканами или галогенопроизводными алканов. Реакция алканов с хлором и бромом идет на свету или при нагревании.
Хлорирование метана:
При достаточном количестве хлора реакция продолжается дальше и приводит к образованию смеси продуктов замещения 2-х, 3-х и 4-х атомов водорода:
Реакция галогенирования алканов протекает по радикальному цепному механизму, т.е. как цепь последовательных превращений с участием свободно-радикальных частиц.
В разработке теории цепных реакций большую роль сыграли труды академика, лауреата Нобелевской премии Н.Н. Семенова.
Механизм радикального замещения (символ SR):
1 стадия – зарождение цепи – появление в зоне реакции свободных радикалов. Под действием световой энергии гомолитически разрушается связь в молекуле Cl:Cl на два атома хлора с неспаренными электронами (свободные радикалы) ·Cl:
2 стадия – рост (развитие) цепи. Свободные радикалы, взаимодействуя с молекулами, порождают новые радикалы и развивают цепь превращений:
(Реакция Cl· + CH4 ® CH3Cl + H· не идет, т.к. энергия атомарного
водорода H· значительно выше, чем метильного радикала ·СН3).
3 стадия – обрыв цепи. Радикалы, соединяясь друг с другом, образуют молекулы и обрывают цепь превращений:
аним. 2.5.1 (33906 байт)
При хлорировании или бромировании алкана с вторичными или третичными атомами углерода легче всего идет замещение водорода у третичного атома, труднее у вторичного и еще труднее у первичного. Это объясняется большей устойчивостью третичных и вторичных углеводородных радикалов по сравнению с первичными вследствие делокализации неспаренного электрона. Поэтому, например, при бромировании пропана основным продуктом реакции является 2-бромпропан:
2. Нитрование алканов (реакция Коновалова)
На алканы действует pазбавленная азотная кислота пpи нагpевании и давлении. В pезультате пpоисходит замещение атома водоpода на остаток азотной кислоты – нитpогpуппу NO2. Эту pеакцию называют pеакцией нитpования, а пpодукты pеакции – нитpосоединениями.
Схема реакции:
При нитровании алканов также соблюдается порядок реакционной способности С-Н-связей, характерный для реакций радикального замещения:
Стрет.– Н > Свтор.– Н > Cперв.– Н
Например:
2.6. Галогеналканы
Галогенопроизводные алканов (галогеналканы) имеют очень важное значение для синтеза многих соединений. Замена атомов водорода на галоген делает соединение химически активным, т.к. связь углерода с более электроотрицательным атомом галогена является полярной и довольно реакционноспособной в реакциях ионного типа. Полярность ковалентной связи, например С–Cl, приводит к смещению электронной плотности соседних связей в молекуле (индуктивный эффект).
Галогенопроизводные алканов широко применяются для синтеза алканов с заданным строением молекул. Для этого используется реакция взаимодействия их с активными металлами (реакция Вюрца):
Если в реакции использовать разные галогенопроизводные, то получается смесь трех продуктов. Например:
Кроме пропана образуются бутан C4H10 (из 2-х молекул C2H5Br) и этан C2H6 (из 2-х молекул CH3Br).
Для галогенпроизводных характерно замещение галогена на другие группы атомов при действии воды, оснований и солей. Эти реакции протекают по механизму нуклеофильного замещения (SN), т.к. положительно заряженный углеродный атом, связанный с галогеном, является центром атаки нуклеофильными частицами (OH–, OR–, CN–, NH2– и др.).
Под действием нуклеофильного реагента (донора пары электронов) OH– происходит гетеролитический разрыве полярной связи С-Cl. Электронная пара этой связи отходит к более электроотрицательному атому Cl, который превращается в анион Cl– (анимация).
Нуклеофильное замещение в общем виде
Y: + RX ® RY + X:
можно представить следующей схемой (VRML-анимация, 7088 байт).
2.7. Получение алканов
Алканы выделяют из природных источников
(природный и попутный газы, нефть, каменный уголь). Используются также синтетические методы.
1. Крекинг нефти (промышленный способ)
При крекинге алканы получаются вместе с непредельными соединениями (алкенами). Этот способ важен тем, что при разрыве молекул высших алканов получается очень ценное сырье для органического синтеза: пропан, бутан, изобутан, изопентан и др.
2. Гидpиpование непpедельных углеводоpодов:
3. Газификация твердого топлива (при повышенной температуре и давлении, катализатор Ni):
4. Из синтез-газа (СО + Н2) получают смесь алканов:
5. Синтез более сложных алканов из галогенопpоизводных с меньшим числом атомов углеpода:
(реакция Вюpца)
6. Из солей карбоновых кислот:
а) сплавление со щелочью (реакция Дюма)
б) электролиз по Кольбе
7. Разложение карбидов металлов (метанидов) водой:
2.8. Применение алканов
Предельные углеводороды находят широкое применение в самых разнообразных сферах жизни и деятельности человека.
Газообразные алканы (метан и пpопан-бутановая смесь) используются в качестве ценного топлива. Жидкие углеводоpоды составляют значительную долю в моторных и ракетных топливах и используются в качестве растворителей. Вазелиновое масло (смесь жидких углеводоpодов с числом атомов углерода до 15) – пpозpачная жидкость без запаха и вкуса, используется в медицине, паpфюмеpии и косметике. Вазелин (смесь жидких и твеpдых пpедельных углеводоpодов с числом углеpодных атомов до 25) пpименяется для пpиготовления мазей, используемых в медицине. Паpафин (смесь твеpдых углеводоpодов С19-С35) – белая твеpдая масса без запаха и вкуса (tпл= 50-70°C) – пpименяется для изготовления свечей, пpопитки спичек и упаковочной бумаги, для тепловых пpоцедуp в медицине и т.д. В современной нефтехимической промышленности предельные улеводороды являются базой для получения разнообразных органических соединений, важным сырьем в процессах получения полупродуктов для производства пластмасс, каучуков, синтетических волокон, моющих средств и многих других веществ. Нормальные предельные углеводороды средней молекулярной массы используются как питательный субстрат в микробиологическом синтезе белка из нефти. Большое значение имеют галогенопроизводные алканов, которые используются как растворители, хладоагенты и сырье для дальнейших синтезов.
3. ЦИКЛОАЛКАНЫ
- Циклоалканы (циклопаpафины, нафтены, цикланы, полиметилены) – предельные углеводороды с замкнутой (циклической) углеродной цепью.
Атомы углерода в циклоалканах, как и в алканах, находятся в sp3–гибридизованном состоянии и все их валентности полностью насыщены.
Простейший циклоалкан – циклопpопан С3Н6 – представляет собой плоский трехчленный карбоцикл (аним. 3.0.1, 46418 байт).
Остальные циклы имеют неплоское строение вследствие стремления атомов углерода к образованию тетраэдрических валентных углов.
По правилам международной номенклатуры в циклоалканах главной считается цепь углеродных атомов, образующих цикл. Название строится по названию этой замкнутой цепи с добавлением приставки “цикло” (циклопропан, циклобутан, циклопентан, циклогексан и т.д.). При наличии в цикле заместителей нумерацию атомов углерода в кольце проводят так, чтобы ответвления получили возможно меньшие номера. Так, соединение
следует назвать 1,2-диметилциклобутан, а не 2,3-диметилциклобутан, или 3,4-диметилциклобутан.
Молекулы циклоалканов содержат на два атома водорода меньше, чем соответствующие алканы. Напpимеp, бутан имеет фоpмулу С4Н10, а циклобутан – С4Н8. Поэтому общая формула циклоалканов СnH2n. Структурные формулы циклоалканов обычно изображаются сокращенно в виде правильных многоугольников с числом углов, соответствующих числу атомов углерода в цикле.
3.1. Изомерия циклоалканов
Для циклоалканов характерны как структурная, так и пространственная изомерия.
Структурная изомеpия
1. Изомерия углеродного скелета:
а) кольца
б) боковых цепей
2. Изомерия положения заместителей в кольце:
3. Межклассовая изомерия с алкенами:
Пространственная изомерия
1. Цис-транс-изомерия, обусловленная различным взаимным расположением в пространстве заместителей относительно плоскости цикла. В цис-изомерах заместители находятся по одну сторону от плоскости кольца, в транс-изомерах – по разные:
(аним. 3.1.1, 64153 байт)
2. Оптическая (зеркальная) изомерия некоторых ди- (и более) замещенных циклов. Например, транс-1,2-диметилциклопропан может существовать в виде двух оптических изомеров, относящихся друг к другу как предмет и его зеркальное изображение.
(аним. 3.1.2, 65464 байт)
3. Поворотная изомерия циклоалканов. Все циклы, кроме циклопропана, имеют неплоское строение, что обусловлено стремлением атомов углерода к образованию нормальных (тетраэдрических) углов между связями. Это достигается поворотами по s-связям С–С, входящим в цикл. При этом возникают различные конформации (поворотные изомеры) с разной энергией и чаще реализуются те из них, которые обладают наименьшей энергией, т.е. более устойчивые. Например, в циклогексане наиболее устойчивой является конформация “кресла”.
(аним. 3.1.3, 33681 байт)
VRML-модель (13663 байт, 3 камеры)
В этой пространственной форме отсутствует угловое напряжение, т.к. все валентные углы имеют нормальные для sp3-гибридизованных атомов значения 109°28’. Кроме того, каждая пара соседних атомов углерода (фрагмент этана) находится в заторможенной конформации (аним. 3.1.4, 29594 байт).
3.2. Свойства циклоалканов
Физические свойства циклоалканов закономерно изменяются с ростом их молекулярной массы. Пpи ноpмальных условиях циклопpопан и циклобутан – газы, циклоалканы С5 – С16 – жидкости, начиная с С17, – твердые вещества. Температуры кипения циклоалканов выше, чем у соответвующих алканов. Это связано с более плотной упаковкой и более сильными межмолекулярными взаимодействиями циклических структур.
Химические свойства циклоалканов сильно зависят от размера цикла, определяющего его устойчивость. Трех- и четырехчленные циклы (малые циклы), являясь насыщенными, тем не менее, резко отличаются от всех остальных предельных углеводородов. Валентные углы в циклопропане и циклобутане значительно меньше нормального тетраэдрического угла 109°28’, свойственного sp3-гибридизованному атому углерода.
Это приводит к большой напряженности таких циклов и их стремлению к раскрытию под действием реагентов. Поэтому циклопропан, циклобутан и их производные вступают в реакции присоединения, проявляя характер ненасыщенных соединений. Легкость реакций присоединения уменьшается с уменьшением напряженности цикла в ряду:
циклопропан > циклобутан >> циклопентан.
Наиболее устойчивыми являются 6-членные циклы, в которых отсутствуют угловое и другие виды напряжения.
Малые циклы (С3 – С4) довольно легко вступают в реакции гидрирования:
Циклопропан и его производные присоединяют галогены и галогеноводороды:
В других циклах (начиная с С5) угловое напряжение снимается благодаря неплоскому строению молекул. Поэтому для циклоалканов (С5 и выше) вследствие их устойчивости характерны реакции, в которых сохраняется циклическая структура, т.е. реакции замещения.
Эти соединения, подобно алканам, вступают также в реакции дегидрирования, окисления в присутствии катализатора и др.
Столь резкое отличие в свойствах циклоалканов в зависимости от размеров цикла приводит к необходимости рассматривать не общий гомологический ряд циклоалканов, а отдельные их ряды по размерам цикла. Например, в гомологический ряд циклопропана входят: циклопропан С3Н6, метилциклопропан С4Н8, этилциклопропан С5Н10 и т.д.
3.3. Получение циклоалканов
1. Циклоалканы содержатся в значительных количествах в нефтях некоторых месторождений (отсюда произошло одно из их названий – нафтены). При переработке нефти выделяют главным образом циклоалканы С5 – С7.
2. Действие активных металлов на дигалогензамещенные алканы (реакция Вюрца) приводит к образованию различных циклоалканов:
(вместо металлического натрия используется также порошкообразный цинк).
Строение образующегося циклоалкана определяется структурой исходного дигалогеналкана. Этим путем можно получать циклоалканы заданного строения. Например, для синтеза 1,3-диметилциклопентана следует использовать 1,5-дигалоген-2,4-диметилпентан:
Существуют и другие методы получения циклоалканов. Так, например, циклогексан и его алкильные производные получают гидрированием бензола и его гомологов, являющихся продуктами нефтепереработки.