Биосинтез и катаболизм пуриновых и пиримидиновых нуклеотидов. Определение конечных продуктов их обмена. Нарушение обмена нуклеотидов.
Молекулярные механизмы репликации ДНК. Транскрипция – биосинтез РНК.
Биосинтез белка в рибосомах. Этапы и механизм трансляции, регуляция трансляции.
ПЕРЕВАРИВАНИЕ НУКЛНОПРОТЕИНОВ В ЖЕЛУДОЧНО-КИШЕЧНОМ ТРАКТЕ
Пищевые нуклеопротеины, попадая в организм человека, в желудке отщепляют белковый компонент и денатурируют под действием HCl желудочного сока (рис.). Далее полинуклеотидная часть этих молекул гидролизуется в кишечнике до мононуклеотидов.
В расщеплении нуклеиновых кислот принимают участие ДНК-азы и РНК-азы панкреатического сока, которые, будучи эндонуклеазами, гидролизуют макромолекулы до олигонуклеотидов. Последние под действием фосфодиэстераз панкреатической железы расщепляются до смеси 3′- и 5′-мононуклеотидов. Нуклеотидазы и неспецифические фосфатазы гидролитически отщепляют фосфатный остаток нуклеотидов и превращают их в нуклеозиды, которые либо всасываются клетками тонкого кишечника, либо расщепляются нуклеозидфосфорилазами кишечника с образованием рибозоили дезоксирибозо-1-фосфата, пуриновых и пиримидиновых оснований.
Пищевые пурины и пиримидины не являются незаменимыми пищевыми факторами и очень мало используются для синтеза нуклеиновых кислот тканей. В энтероцитах обнаружена высокая активность ксантиноксидазы – фермента, который большую часть пуринов, поступающих в клетки, превращает в мочевую кислоту, удаляющуюся с мочой. Пиримидиновые основания, не успевшие поступить в энтероциты, под действием микрофлоры кишечника расщепляются до NH3, CO2, β-аланина и β-аминоизобутирата.
Рис. 10-1. Переваривание нуклеиновых кислот пищи.
В различных клетках организма синтезируется до 90% пуриновых и пиримидиновых нуклеотидов из простых предшественников de novo. Введённые в кровь азотистые основания и нуклеозиды, а также основания и нуклеозиды, образующиеся в результате внутриклеточного разрушения нуклеиновых кислот, в небольшом количестве могут использоваться для повторного синтеза нуклеотидов по так называемым «запасным» путям. |
БИОСИНТЕЗ ПУРИНОВЫХ НУКЛЕОТИДОВ DE NOVO
ОБРАЗОВАНИЕ 5-ФОСФОРИБОЗИЛ-1-ДИФОСФАТА
Фосфорибозилдифосфат (ФРДФ), или фосфорибозилпирофосфат (ФРПФ) занимает центральное место в синтезе как пуриновых, так и пиримидиновых нуклеотидов (рис. 10-2).
Он образуется за счёт переноса β,γ-пирофосфатного остатка ATФ на рибозо-5-фосфат в реакции, катализируемой ФРДФ-синтетазой.
Источниками рибозо-5-фосфата могут быть: пентозофосфатный путь превращения глюкозы или катаболизм нуклеозидов, в ходе которого под действием нуклеозидфосфорилазы первоначально образуется рибозо-1-фосфат, а затем с помощью соответствующей мутазы фосфатный остаток переносится в 5-положение.
ФРДФ участвует не только в синтезе пуриновых и пиримидиновьгх нуклеотидов из простых предшественников (т.е. de novo), но используется на образование пуриновых нуклеотидов по «запасному» пути и в синтезе нуклеотидных коферментов.
Сборка пуринового гетероцикла осуществляется на остатке рибозо-5-фосфата при участии различных доноров углерода и азота (рис. 10-3).
Рис. Образование 5-фосфорибозил-1-дифосфата.
|
Включение простых предшественников в пуриновое кольцо с образованием ИМФ
Первая специфическая реакция образования пуриновых нуклеотидов – перенос амидной группы Глн на ФРДФ с образованием 5-фосфорибозил-1-амина (рис.). Эту реакцию катализирует фермент амидофосфорибозилтрансфераза. При этом формируется β-Ν-гликозидная связь.
Затем к аминогруппе 5-фосфорибозил-1-амина присоединяются остаток глицина, N5, N10-мете-нил-Н4-фолата ещё одна амидная группа глута-мина, диоксид углерода, аминогруппа аспартата и формильный остаток N10-формил Н4-фолата.
Результатом этой десятистадийной серии реакций является образование первого пуринового нуклеотида – инозин-5′-монофосфата (ИМФ), на синтез которого затрачивается не менее шести молекул АТФ. В отличие от прокариотов, у которых каждую стадию этого процесса катализирует отдельный фермент, у эукариотов за счёт слияния генов возникли полифункциональные ферменты, каждый из которых катализирует несколько реакций. В синтезе пуриновых нуклеотидов de novo это реакции 3, 4 и 6, 7-8 и 10-11 соответственно.
ИМФ в основном используется на синтез АМФ или ГМФ. Небольшое количество этого продукта обнаруживается также в тРНК в качестве одного из минорных нуклеотидов.
Превращение ИМФ в АМФ и ГМФ в обоих случаях включает 2 стадии и идёт с затратой энергии (рис. 10-5).
Аденилосукцинатсинтетаза, используя энергию ГТФ, присоединяет аспартат к ИМФ с образованием аденилосукцината, который в реакции, катализируемой аденилосукциназой, отщепляет фумарат и превращается в АМФ.
Второй пуриновый нуклеотид (ГМФ) образуется также в 2 стадии. Сначала ИМФ окисляется NАD+-зависимой ИМФ-дегидрогеназой с образованием ксантозин-5 -монофосфата (КМФ). Последующее трансамидирование гидроксиль-ной группы при С2-пуринового кольца КМФ катализирует ГМФ-синтетаза с использованием амидной группы Глн и энергии АТФ. |
При образовании пуриновых нуклеотидов ГТФ расходуется на синтез АМФ, а АТФ – на синтез ГМФ. Перекрёстное использование пуриновых нуклеозидтрифосфатов на образование конечных продуктов синтеза помогает поддерживать в клетках баланс адениловых и гуаниловых нуклеотидов.
Печень – основное место образования пуриновых нуклеотидов, откуда они могут поступать в ткани, не способные к их синтезу: эритроциты, ПЯЛ и частично мозг.
Рис. Происхождение атомов С и N в пуриновом кольце.
Образование нуклеозидди- и трифосфатов
В образовании нуклеиновых кислот, некоторых коферментов и во многих синтетических процессах нуклеотиды используются в виде ди-и трифосфатов, синтез которых катализируют ферменты класса трансфераз. АМФ и ГМФ превращаются в нуклеозиддифосфаты (НДФ) с помощью специфичных к азотистому основанию нуклеозидмонофосфаткиназ (НМФ-киназ) и АТФ. Так, аденилаткиназа катализирует реакцию:
амф + атф → 2 адф, а гуанилаткиназа:
гмф + атф → гдф + адф.
Аденилаткиназа особенно активна в печени и мышцах, где высок уровень энергоёмких процессов. Функция этого фермента заключается в том, чтобы поддерживать в тканях равновесие фонда адениловых нуклеотидов: AMФ, AДФ и ATФ.
Взаимопревращения нуклеозиддифосфатов и нуклеозидтрифосфатов осуществляет нуклео-зиддифосфаткиназа. Этот фермент в отличие от НМФ-киназ обладает широкой субстратной специфичностью и, в частности, может катализировать реакцию:
гдф + атф → гтф + адф.
Превращение AДФ в ATФ происходит, в основном, за счёт окислительного фосфорилирования или в реакциях субстратного фосфо-рилирования гликолиза или цитратного цикла.
В. «ЗАПАСНЫЕ» ПУТИ СИНТЕЗА ПУРИНОВЫХ НУКЛЕОТИДОВ (РЕУТИЛИЗАЦИЯ АЗОТИСТЫХ ОСНОВАНИЙ И НУКЛЕОЗИДОВ)
|
Рис. Синтез пуриновых нуклеотидов de novo.
Рис. 10-5. Синтез АМФ и ГМФ из ИМФ. 1 – аденилосукцинатсинтетаза; 2 – аденилосукциназа; 3 – ИМФ-дегидрогеназа; 4 – ГМФ-синтетаза.
Огромные затраты энергии для синтеза пуриновых нуклеотидов de novo не способны полностью обеспечить субстратами синтез нуклеиновых кислот в период гаструляции и раннего роста ребёнка. Потребность в большом количестве нуклеотидов привела к развитию «запасных» путей синтеза этих «дорогих» молекул. Наибольшее значение в этом процессе имеют ферменты, осуществляющие превращение пуринов в мононуклеотиды с использованием ФРДФ как донора остатка фосфорибозы.
Синтез АМФ и ГМФ из аденина и гуанина ФРДФ-зависимое фосфорибозилирование пуринов катализируют 2 фермента.
Аденинфосфорибозилтрансфераза, ответственная за образование АМФ (рис.). Гипоксантин-гуанинфосфорибозилтрансфераза, катализирующая образование ИМФ и ГМФ из гипоксантина и гуанина соответственно (рис. 10-7).
Однако в организме при любых ситуациях этот путь синтеза пуриновых нуклеотидов, получивший название «путь спасения», имеет вспомогательное значение.
Рис. Фосфорибозилирование аденина в АМФ.
Рис. Фосфорибозилирование гипоксантина и гуанина с образованием ИМФ и ГМФ.
Нуклеозидкиназы
Нуклеозиды, получающиеся при катаболизме нуклеиновых кислот из нуклеотидов под действием нуклеотидаз, могут повторно фосфорилироваться, образуя нуклеозид-5 -монофосфаты за счёт переноса γ-фосфатного остатка АТФ на соответствующий субстрат. У млекопитающих такой путь пополнения запасов пуриновых нуклеотидов в клетке не имеет существенного значения. Основным ферментом этой группы является аденозинкиназа, которая ускоряет реакцию:
Аденозин + АТФ → АМФ + АДФ.
Из всех способов реутилизации пуринов наиболее активна гипоксантин-гуанинфосфорибозилтрансферазная реакция, поскольку ИМФ, образующийся в этой реакции, вовлекается в синтез АМФ и ГМФ. Использование гипоксантина и гуанина по запасному пути становится жизненно важным событием в клетках, не способных к синтезу пуриновых нуклеотидов de novo. Значение аденинфосфорибозилтрансферазы в повторном использовании аденина менее существенно. По сравнению с аденозином количество аденина в клетках мало, а первый возвращается в фонд нуклеотидов с помощью аденозинкиназы.
Г. РЕГУЛЯЦИЯ СИНТЕЗА ПУРИНОВЫХ НУКЛЕОТИДОВ
Основным показателем, от которого зависит синтез пуриновых нуклеотидов, служит концентрация ФРДФ, которая, в свою очередь, зависит от скорости его синтеза, утилизации и разрушения. Количество ФРДФ определяется доступностью рибозо-5-фосфата и активностью ФРДФ синтетазы – фермента, чувствительного к концентрации фосфата и пуриновых нуклеотидов.
Внутриклеточная концентрация ФРДФ строго регулируется и обычно низкая. ФРДФ синтетаза – аллостерический фермент. Он активируется неорганическим фосфатом (Pi) и ингибируется пуриновыми нуклеозидмоно-, ди- и трифосфатами, которые по эффективности ингибирования распределяются в следующем порядке: НМФ > НДФ > НТФ (рис. 10-8). ФРДФ служит не только субстратом, но и аллостерическим активатором второй реакции синтеза пури-нонуклеотидов de novo, которую катализирует амидофосфорибозилтрансфераза.
Рис. 10-8. Регуляция синтеза пуриновых нуклеотидов. 1 – ФРДФ синтетаза; 2 – амидофосфорибозил-трансфераза; 3 – ИМФ дегидрогеназа; 4 – аденило-сукцинатсинтетаза.
Пуриновые нуклеотиды, особенно АМФ и ГМФ по механизму отрицательной обратной связи ингибируют амидофосфорибозилтрансферазу, которая катализирует первую специфическую реакцию синтеза пуриновых нуклеотидов de novo.
Метаболическая цепь образования АМФ и ГМФ de novo регулируется также в месте её разветвления: АМФ ингибирует аденилосукци-натсинтетазу, а ГМФ – реакцию образования ксантиловой кислоты, которую катализирует ИМФ дегидрогеназа. Перекрёстная регуляция путей использования ИМФ служит для того, чтобы снизить синтез одного пуринового нуклеотида при дефиците другого. |
Помимо ферментов основного пути синтеза пуриновых нуклеотидов de novo, регулируется также активность ферментов «запасных» путей: аденинфосфорибозилтрансфераза ингибируется АМФ, а гипоксантин-гуанинфосфорибозил-трансфераза – ИМФ и ГМФ.
Катаболизм пуриновых нуклеотидов
У человека основной продукт катаболизма пуриновых нуклеотидов – мочевая кислота. Её образование идёт путём гидролитического отщепления фосфатного остатка от нуклеотидов с помощью нуклеотидаз или фосфатаз, фосфоролиза N-гликозидной связи нуклеозидов пуриннуклеозидфосфорилазой, последующего дезаминирования и окисления азотистых оснований (рис. 10-9).
От АМФ и аденозина аминогруппа удаляется гидролитически аденозиндезаминазой с образованием ИМФ или инозина. ИМФ и ГМФ превращаются в соответствующие нуклеозиды: инозин и гуанозин под действием 5 –нуклеотида-зы. Пуриннуклеозидфосфорилаза катализирует расщепление N-гликозидной связи в инозине и гуанозине с образованием рибозо-1-фосфата и азотистых оснований: гуанина и гипоксантина. Гуанин дезаминируется и превращается в ксантин, а гипоксантин окисляется в ксантин с помощью ксантиноксидазы, которая катализирует и дальнейшее окисление ксантина в мочевую кислоту.
Рис. Катаболизм пуриновых нуклеотидов до мочевой кислоты.
Ксантиноксидаза – аэробная оксидоредуктаза, простетическая группа которой включает ион молибдена, железа (Fe3+) и FAD. Подобно другим оксидазам, она окисляет пурины молекулярным кислородом с образованием пероксида водорода. В значительных количествах фермент обнаруживается только в печени и кишечнике.
Мочевая кислота удаляется из организма главным образом с мочой и немного через кишечник с фекалиями. У всех млекопитающих, кроме приматов и человека, имеется фермент уриказа, расщепляющий мочевую кислоту с образованием аллантоина, хорошо растворимого в воде (рис. ). |
Рис. Превращение мочевой кислоты в аллантоин.
Амфибии, птицы и рептилии, подобно человеку, лишены уриказы и экскретируют мочевую кислоту и гуанин в качестве конечных продуктов обмена.
Мочевая кислота является слабой кислотой. Содержание недиссоциированной формы и солей (уратов) зависит от рН раствора. При физиологических значениях рН у мочевой кислоты может диссоциировать только один протон из трёх (рК = 5,8), поэтому в биологических жидкостях присутствует как недиссоциированная кислота в комплексе с белками, так и её натриевая соль.
В сыворотке крови в норме содержание мочевой кислоты составляет 0,15-0,47 ммоль/л или 3-7 мг/дл. Ежесуточно из организма выводится от 0,4 до
Нарушения обмена пуриновых нуклеотидов
Ураты значительно более растворимы, чем мочевая кислота: так, в моче с рН 5,0, когда мочевая кислота не диссоциирована, её растворимость в 10 раз меньше, чем в моче с рН 7,0, при котором основная часть мочевой кислоты представлена солями. Реакция мочи зависит от состава пищи, но, как правило, она слабокислая, поэтому большинство камней в мочевыводящей системе – кристаллы мочевой кислоты.
А. ГИПЕРУРИКЕМИЯ И ПОДАГРА
Когда в плазме крови концентрация мочевой кислоты превышает норму, то возникает гиперурикемия. Вследствие гиперурикемии может развиться подагра – заболевание, при котором кристаллы мочевой кислоты и уратов откладываются в суставных хрящах, синовиальной оболочке, подкожной клетчатке с образованием подагрических узлов, или тофусов. К характерным признакам подагры относят повторяющиеся приступы острого воспаления суставов (чаще всего мелких) – так называемого острого подагрического артрита. Заболевание может прогрессировать в хронический подагрический артрит. |
Поскольку лейкоциты фагоцитируют кристаллы уратов, то причиной воспаления является разрушение лизосомальных мембран лейкоцитов кристаллами мочевой кислоты. Освободившиеся лизосомальные ферменты выходят в цитозоль и разрушают клетки, а продукты клеточного катаболизма вызывают воспаление.
Общий фонд сывороточных уратов в норме составляет ~
Подагра – распространённое заболевание, в разных странах ею страдают от 0,3 до 1,7% населения. А поскольку сывороточный фонд уратов у мужчин в 2 раза больше, чем у женщин, то они и болеют в 20 раз чаще, чем женщины.
Как правило, подагра генетически детерминирована и носит семейный характер. Она вызвана нарушениями в работе ФРДФ синтетазы или ферментов «запасного» пути: гипоксантин-гуа-нинили аденинфосфорибозилтрансфераз.
К другим характерным проявлениям подагры относят нефропатию, при которой наблюдают образование уратных камней в мочевыводящих путях.
Подагра – метаболическое заболевание с нарушением пуринового обмена и накоплением мочевой кислоты в организме, протекающее с повторными приступами острого артрита, кристаллиндуцированными синовиитами, отложением уратов в тканях.
Рис. Поражение суставов большого пальца стопы при подагре
Рис. Отложение уратов под кожей – ушных раковинах и коленных суставах
Подагра относится к «старым» болезням и известна со времен глубокой древности. Термин «подагра» происходит от греческих слов pus, что означает стопа, и agra — захват. Таким образом, уже в названии заболевания подчеркивается одно из кардинальных проявлений подагрического артрита. Подагра рассматривается не только как недуг, при котором патологический процесс локализуется в опорно-двигательном аппарате, но и как системное заболевание, характеризующееся поражением жизненно важных органов, и прежде всего почек. Распространенность подагры в различных регионах варьирует в широких пределах и во многом связана с особенностями питания населения, составляя в среднем 0,1%. В США этот показатель равен 0,84% (возможно, эта цифра завышена).
Синдром Леша-Нихана – тяжёлая форма гиперурикемии, которая наследуется как рецессивный признак, сцепленный с Х-хромосомой, и проявляется только у мальчиков.
Болезнь вызвана полным отсутствием активности гипоксантин-гуанинфосфорибозилтранс-феразы и сопровождается гиперурикемией с содержанием мочевой кислоты от 9 до 12 мг/дл, что превышает растворимость уратов при нормальном рН плазмы. Экскреция мочевой кислоты у больных с синдромом Леша-Нихана превышает 600 мг/сут и требует для выведения этого количества продукта не менее 2700 мл мочи.
|
У детей с данной патологией в раннем возрасте появляются тофусы, уратные камни в моче-выводящих путях и серьёзные неврологические отклонения, сопровождающиеся нарушением речи, церебральными параличами, снижением интеллекта, склонностью к нанесению себе увечий (укусы губ, языка, пальцев).
В первые месяцы жизни неврологические расстройства не обнаруживаются, но на пелёнках отмечают розовые и оранжевые пятна, вызванные присутствием в моче кристаллов мочевой кислоты. При отсутствии лечения больные погибают в возрасте до 10 лет из-за нарушения функции почек.
Полная потеря активности аденинфосфо-рибозилтрансферазы не столь драматична, как отсутствие гипоксантин-гуанинфосфорибозил-трансферазы, однако и в этом случае нарушение повторного использования аденина вызывает гиперурикемию и почечнокаменную болезнь, при которой наблюдается образование кристаллов 2,8-дигидроксиаденина.
Рис. Больной с синдромом Леш-Нихана
Рис. Больной с синдромом Леш-Нихана
ЛЕЧЕНИЕ ГИПЕРУРИКЕМИИ
Основным препаратом, используемым для лечения гиперурикемии, является аллопуринол – структурный аналог гипоксантина (рис. 1011).
Аллопуринол оказывает двоякое действие на обмен пуриновых нуклеотидов:
• ингибирует ксантиноксидазу и останавливает катаболизм пуринов на стадии образования гипоксантина, растворимость которого почти в 10 раз выше, чем мочевой кислоты. Действие препарата на фермент объясняется тем, что сначала он, подобно гипоксантину, окисляется в гидроксипуринол, но при этом
• остаётся прочно связанным с активным центром фермента, вызывая его инактивацию; с другой стороны, будучи псевдосубстратом, аллопуринол может превращаться в нуклеотид по «запасному» пути и ингибировать ФРДФ синтетазу и амидофосфорибозил-трансферазу, вызывая торможение синтеза пуринов de novo. При лечении аллопуринолом детей с синдромом Леша-Нихана удаётся предотвратить развитие патологических изменений в суставах и почках, вызванных гиперпродукцией мочевой кислоты, но препарат не излечивает аномалии в поведении, неврологические и психические расстройства. Рис. 10-11. Строение аллопуринола и гипоксантина.
Рис. Препарат «Аллопуринол», используемый для лечения подагры
|
ГИПОУРИКЕМИЯ
Гипоурикемия и возросшая экскреция гипоксантина и ксантина может быть следствием недостаточности ксантиноксидазы, вызванной нарушениями в структуре гена этого фермента, либо результатом повреждения печени.
Биосинтез пиримидиновых нуклеотидов DE NOVO
Фонд пиримидиновых нуклеотидов, подобно пуриновым нуклеотидам, в основном синтезируется из простых предшественников de novo, и только 10-20% от общего количества образуется по «запасным» путям из азотистых оснований или нуклеозидов.
В отличие от синтеза пуринов, где формирование гетероциклического основания осуществляется на остатке рибозо-5-фосфата, пиримидиновое кольцо синтезируется из простых предшественников: глутамина, СО2 и аспарагиновой кислоты и затем связывается с рибозо-5-фосфатом, полученным от ФРДФ.
Процесс протекает в цитозоле клеток. Синтез ключевого пиримидинового нуклеотида – УМФ идёт с участием 3 ферментов, 2 из которых полифункциональны.
Образование дигидрооротата
У млекопитающих ключевой, регуляторной реакцией в синтезе пиримидиновых нуклеотидов является синтез карбамоилфосфата из глута-мина, СО2 и АТФ, в реакции катализируемой карбамоилфосфатсинтетазой II (КФС II), которая протекает в цитозоле клеток (рис. 10-12). В реакции NH2-группа карбамоилфосфата образуется за счёт амидной группы глутамина, что отличает эту реакцию от реакции синтеза карбамоилфосфата в митохондриях в процессе синтеза мочевины из CO2, NH3 и АТФ с участием КФС I.
Карбамоилфосфат, использующийся на образование пиримидиновых нуклеотидов, является продуктом полифункционального фермента, который наряду с активностью КФС II содержит каталитические центры аспартаттранскарбамои-лазы и дигидрооротазы. Этот фермент назвали «КАД-фермент» – по начальным буквам ферментативных активностей, которыми обладают отдельные каталитические домены этого белка. Объединение первых трёх ферментов метаболического пути в единый полифункциональный комплекс позволяет использовать почти весь синтезированный в первой реакции карбамо-илфосфат на взаимодействие с аспартатом и образование карбамоиласпартата, от которого отщепляется вода и образуется циклический продукт – дигидрооротат (рис. 10-13). |
Отщепляясь от КАД-фермента, дигидрооротат подвергается дегидрированию NAD-зависимой
дигидрооротатдегидрогеназой и превращается в свободное пиримидиновое основание – оротовую кислоту, или оротат.
Образование УМФ
В цитозоле оротат становится субстратом бифункционального фермента – УМФ-синтазы, которая обнаруживает оротатфосфорибо-зилтранс-феразную и ОМФ-декарбоксилазную активности. Первоначально фосфорибозильный остаток от ФРДФ переносится на оротат и образуется нуклеотид – оротидин-5 -монофосфат (ОМФ), декарбоксилирование которого даёт уридин-5 -монофосфат (УМФ).
Таким образом, шесть последовательных реакций синтеза пиримидиновых нуклеотидов осуществляются тремя ферментами, которые кодируются в геноме человека тремя различными структурными генами.
Биосинтез УДФ, УТФ и цитидиловых нуклеотидов
УМФ под действием специфических нуклео-зидмонофосфат (НМФ) и нуклеозиддифосфат (НДФ) киназ превращается в УДФ и УТФ в результате переноса γ-фосфатного остатка АТФ на соответствующий субстрат.
НМФ-киназа катализирует следующую реакцию:
умф + атф → удф + адф, а НДФ-киназа:
удф + атф → утф + адф.
ЦТФ синтетаза катализирует амидирование УТФ (рис.), осуществляя АТФ-зависимое замещение кетогруппы урацила на амидную группу глутамина с образованием цитидин-5 -трифосфата (ЦТФ).
Рис. Синтез карбамоилфосфата.
Рис. Биосинтез УМФ de novo.
Рис. Синтез ЦТФ из УТФ.
Б. «ЗАПАСНЫЕ» ПУТИ СИНТЕЗА ПИРИМИДИНОВЫХ НУКЛЕОТИДОВ
Использование пиримидиновьгх оснований и нуклеозидов в реакциях реутилизации препятствует катаболизму этих соединений до конечных продуктов с расщеплением пиримидинового кольца. В ресинтезе пиримидинов участвуют некоторые ферменты катаболизма нуклеотидов. Так, уридинфосфорилаза в обратимой реакции может рибозилировать урацил с образованием уридина. |
Урацил + Рибозо-1-фосфат → Уридин + Н3РО4.
Превращение нуклеозидов в нуклеотиды катализирует уридинцитидинкиназа.
Часть ЦМФ может превращаться в УМФ под действием цитидиндезаминазы и пополнять запасы уридиловых нуклеотидов.
ЦМФ + H2O → УМФ + NH3.
Регуляция синтеза пиримидиновых нуклеотидов
Регуляторным ферментом в синтезе пири-мидиновых нуклеотидов является полифункциональный КАД-фермент. УМФ и УТФ ал-лостерически ингибируют, а ФРДФ активирует его карбамоилсинтетазную активность, тогда как активность аспартаттранскарбамоилазного домена ингибирует ЦТФ, но активирует АТФ (рис.).
Рис. Регуляция синтеза пиримидиновых нуклеотидов. КАД-фермент катализирует реакции 1, 2, 3; дигидрооротатдегидрогеназа – реакцию 4; УМФ син-тетаза – реакции 5 и 6; НМФ киназа – реакцию 7; НДФ киназа – реакцию 8; ЦТФ синтетаза – реацию 9.
Этот способ регуляции позволяет предотвратить избыточный синтез не только УМФ, но и всех других пиримидиновых нуклеотидов и обеспечить сбалансированное образование всех четырёх основных пуриновых и пиримидиновых нуклеотидов, необходимых для синтеза РНК.
НАРУШЕНИЯ ОБМЕНА ПИРИМИДИНОВЫХ НУКЛЕОТИДОВ
Описано несколько нарушений, связанных со снижением активности ферментов обмена пиримидиновых нуклеотидов. Одно из них – оро-тацидурия – вызвано дефектом в работе второго бифункционального фермента синтеза нуклеоти-дов de novo – УМФ-синтазы, два других обнаружены в процессе катаболизма пиримидинов.
ОРОТАЦИДУРИЯ
Это единственное нарушение синтеза пиримидинов de novo. Оно вызвано снижением активности УМФ-синтазы, которая катализирует образование и декарбоксилирование ОМФ. Поскольку в эмбриогенезе от образования пиримидинов de novo зависит обеспечение синтеза ДНК субстратами, то жизнь плода невозможна при полном отсутствии активности этого фермента. Действительно, у всех пациентов с оротацидурией отмечают заметную, хотя и очень низкую активность УМФ-синтазы. Установлено, что содержание оротовой кислоты в моче пациентов (1 г/сут и более) значительно превосходит количество оро-тата, которое ежедневно синтезируется в норме (около 600 мг/сут). Снижение синтеза пирими-диновых нуклеотидов, наблюдающееся при этой патологии, нарушает регуляцию КАД-фермента по механизму ретроингибирования, из-за чего возникает гиперпродукция оротата. |
Клинически наиболее характерное следствие оротацидурии – мегалобластная анемия, вызванная неспособностью организма обеспечить нормальную скорость деления клеток эритроцитарного ряда. Её диагностируют у детей на том основании, что она не поддаётся лечению препаратами фолиевой кислоты.
Недостаточность синтеза пиримидиновых нуклеотидов сказывается на интеллектуальном развитии, двигательной способности и сопровождается нарушениями работы сердца и ЖКТ. Нарушается формирование иммунной системы, и наблюдается повышенная чувствительность к различным инфекциям.
Гиперэкскреция оротовой кислоты сопровождается нарушениями со стороны мочевыводящей системы и образованием камней. При отсутствии лечения больные обычно погибают в первые годы жизни. При этом оротовая кислота не оказывает токсического эффекта. Многочисленные нарушения в работе разных систем организма вызваны «пиримидиновым голодом». Для лечения этой болезни применяют уридин (от 0,5 до 1 г/сут), который по «запасному» пути превращается в УМФ.
Уридин + АТФ → УМФ + АДФ.
Рис. 10-16. Катаболизм пиримидиновых оснований. 1 – дигидропиримидиндегидрогеназа; 2 – дигидропи-римидинциклогидролаза; 3 – уреидопропионаза.
Нагрузка уридином устраняет «пиримидиновый голод», а поскольку из УМФ могут синтезироваться все остальные нуклеотиды пиримиди-нового ряда, то снижается выделение оротовой кислоты из-за восстановления механизма ретроингибирования КАД-фермента. Для больных оротацидурией лечение уридином продолжается в течение всей жизни, и этот нуклеозид становится для них незаменимым пищевым фактором.
Кроме генетически обусловленных причин, оротацидурия может наблюдаться:
• при гипераммониемии, вызванной дефектом любого из ферментов орнитинового цикла, за исключением карбамоилфосфатсинтетазы I. В этом случае карбамоилфосфат, синтезированный в митохондриях, выходит в цитозоль клеток и начинает использоваться на образование пиримидиновых нуклеотидов. Концентрация всех метаболитов, в том числе и оротовой кислоты, повышается. Наиболее значительная экскреция оротата отмечается при недостаточности орнитин-карбамоилтрансферазы (второго фермента орнитинового цикла); |
в процессе лечения подагры аллопуринолом, который превращается в оксипури-нолмононуклеотид и становится сильным ингибитором УМФ-синтазы. Это приводит к накоплению оротовой кислоты в тканях и крови.
КАТАБОЛИЗМ ПИРИМИДИНОВЫХ НУКЛЕОТИДОВ
Уже говорилось о том, что цитидиловые нуклеотиды могут гидролитически терять аминогруппу и превращаться в УМФ. Когда от УМФ при участии нуклеотидазы (или фосфатазы) и уридинфосфорилазы отщепляются неорганический фосфат и рибоза, то остаётся азотистое основание – урацил. Аналогично расщепляются дезоксирибонуклеотиды, и из dЦМФ образуется урацил, а из dТМФ – тимин (рис.).
Пиримидиновые основания при участии ди-гидропиримидиндегидрогеназы присоединяют 2 атома водорода по двойной связи кольца с образованием дигидроурацила или дигидротимина. Оба гетероцикла могут взаимодействовать с водой в реакции, катализируемой дигидро-пиримидинциклогидролазой, и дигидроурацил превращается в β-уреидопропионовую кислоту, а дигидротимин – в β-уреидоизомасляную кислоту. Оба β-уреидопроизводных под действием общего для них фермента уреидопропионазы расщепляются с образованием СО2, NH4+ и β-аланина или β-аминоизомасляной кислоты соответственно. |
β-Аланин обнаруживают в плазме крови и многих тканях. Он используется в мышцах на образование дипептидов: карнозина и анзерина. Под действием бактериальной микрофлоры кишечника β-аланин включается в пантотеновую кислоту, которая всасывается и используется на образование KoA.
Часть β-аланина и β-аминоизобутирата трансаминируется с α-кетоглутаратом и даёт малонил полуальдегид или метилмалонил полуальдегид соответственно, которые превращаются в ма-лонил-КоА и сукцинил-КоА и используются в соответствующих метаболических путях, либо окисляются до СО2 и Н2О. Частично β-амино-изобутират экскретируется с мочой.
НАРУШЕНИЯ КАТАБОЛИЗМА ПИРИМИДИНОВ
Известны нарушения в работе 2 ферментов этого метаболического пути.
При недостаточности пиримидин-5′-нуклеотидазы нарушаются отщепление неорганического фосфата от пиримидиновых мононуклеотидов и образование нуклеозидов.
Неактивная изоформа пиримидин-5′-нуклеотидазы обнаружена в эритроцитах. В результате наблюдается накопление пиримидиновых НТФ, которые ингибируют пентозофосфатный путь превращения глюкозы и тем самым создают предпосылки к гемолизу эритроцитов.
Дигидропиримидиндегидрогеназа – скорость-лимитирующий фермент катаболизма пиримидинов. Нарушение работы этого фермента сопровождается отклонениями в функционировании нервной системы и диагностируется на основании повышения уровня свободных пиримидинов: урацила и тимина в плазме крови.
Обе стадии могут быть представлены в виде схемы:
АТФ + dАДФ –> АДФ + dATФ; АТФ + dЦДФ –> АДФ + dЦТФ;
АТФ + dГДФ –> АДФ + dГТФ; АТФ + dТДФ –> АДФ + dТТФ.
СТРУКТУРА НУКЛЕИНОВЫХ КИСЛОТ
Нуклеиновые кислоты составляют существенную небелковую часть сложного класса органических веществ, получивших название нуклеопротеинов; последние являются основой наследственного аппарата клетки хромосом. Белковые компоненты нуклеопротеинов подвергаются многообразным превращениям, аналогичным метаболизму белков и продуктов их распада – аминокислот. О нуклеиновых кислотах, их структуре и функциях в живых организмах в последнее время накоплен огромный фактический материал, подробно рассмотренный в ряде специальных руководств и монографий. Помимо уникальной роли нуклеиновых кислот в хранении и реализации наследственной информации, промежуточные продукты их обмена, в частности моно-, ди- и трифосфатнуклеозиды, выполняют важные регуляторные функции, контролируя биоэнергетику клетки и скорость метаболических процессов. В то же время нуклеиновые кислоты не являются незаменимыми пищевыми факторами и не играют существенной роли в качестве энергетического материала. Далее детально рассматриваются (помимо краткого изложения вопросов переваривания) проблемы метаболизма нуклеиновых кислот и их производных, в частности пути биосинтеза и распада пуриновых и пиримидиновых нуклеотидов, современные представления о биогенезе ДНК и РНК и их роли в синтезе белка.
Нуклеиновые кислоты представляют линейные полимеры нуклеозидмонофосфатов, то есть полинуклеотиды. Нуклеотиды построены из трех компонентов: пиримидинового или пуринового основания, пентозы и фосфорной кислоты. Нуклеотиды связаны между собой в цепь фосфодиэфирной связью. Она образуется за счет этерификации ОН — группы С—З- пентозы одного нуклеотида и ОН — группы фосфатного остатка другого нуклеотида. В результате один из концов полинуклеотидной цепи заканчивается свободным фосфатом (Р—конец или5-—конец). На другом конце цепи имеется неэтерифицированная ОН — группа у С—З- пентозы (З- — конец).
Переваривание нуклеопротеинов и всасывание продуктов их распада осуществляются в пищеварительном тракте. Под влиянием ферментов желудка, частично соляной кислоты, нуклеопротеины пищи распадаются на полипептиды и нуклеиновые кислоты; первые в кишечнике подвергаются гидролитическому расщеплению до свободных аминокислот. Распад нуклеиновых кислот происходит в тонкой кишке в основном гидролитическим путем под действием ДНК- и РНКазы панкреатического сока. Продуктами реакции при действии РНКазы являются пуриновые и пи-римидиновые мононуклеотиды, смесь ди- и тринуклеотидов и резистентные к действию РНКазы олигонуклеотиды. В результате действия ДНКазы образуются в основном динуклеотиды, олигонуклеотиды и небольшое количество мононуклеотидов. Полный гидролиз нуклеиновых кислот до стадии мононуклеотидов осуществляется, очевидно, другими, менее изученными ферментами (фосфодиэстеразами) слизистой оболочки кишечника. В отношении дальнейшей судьбы мононуклеотидов существует два предположения. Считают, что мононуклеотиды в кишечнике под действием неспецифических фосфатаз (кислой и щелочной), которые гидролизируют фосфоэфирную связь мононуклеотида («нуклеотидазное» действие), расщепляются с образованием нуклеозидов и фосфорной кислоты и в таком виде всасываются. Согласно второму предположению, мононуклеотиды всасываются, а распад их происходит в клетках слизистой оболочки кишечника. Имеются также доказательства существования в стенке кишечника нуклеотидаз, катализирующих гидролитический распад мононуклеотидов. Дальнейший распад образовавшихся нуклеозидов осуществляется внутри клеток слизистой оболочки преимущественно фосфоролитическим, а не гидролитическим путем. Всасываются преимущественно нуклеозиды, и в таком виде часть азотистых оснований может быть использована для синтеза нуклеиновых кислот организма. Если происходит дальнейший распад нуклеозидов до свободных пуриновых и пиримидиновых оснований, то гуанин не используется для синтетических целей. Другие основания, как показывают опыты с меченными по азоту аденином и урацилом, в тканях могут включаться в состав нуклеиновых кислот. Однако экспериментальные данные свидетельствуют, что биосинтез азотистых оснований, входящих в состав нуклеиновых кислот органов и тканей, протекает преимущественно, если не целиком, de novo из низкомолекулярных азотистых и безазотистых предшественников. Таким образом, синтез нуклеиновых кислот, мономерными единицами которых являются мононуклеотиды, будет определяться скоростью синтеза пуриновых и пиримидиновых нуклеотидов; синтез последних в свою очередь зависит от наличия всех составляющих из трех компонентов. Источником рибозы и дезоксирибозы служат продукты превращения глюкозы в пентозофосфатном цикле. Пока не получены доказательства существенной роли пищевых пентоз в синтезе нуклеиновых кислот. Фосфорная кислота также не является лимитирующим фактором, поскольку она поступает в достаточном количестве с пищей. Следовательно, биосинтез нуклеиновых кислот начинается с синтеза азотистых оснований (точнее, мономерных молекул – мононуклеотидов).
Денатурация и ренатурация ДНК
Вторичная структура ДНК стабилизируется лишь слабыми водородными и гидрофобными связями, следовательно, ДНК способна к денатурации (плавлению) при повышении температуры до 80—90о и ренатурации при последующем охлаждении.
Денатурация и ренатурация ДНК
При денатурации двухспиральная молекула ДНК разделяется на отдельные цепи. Температура, при которой 50% ДНК денатурировано, называется температурой плавления и зависит от качественного состава ДНК. Так как пары Г—Ц стабилизированы тремя водородными связями, а пары А—Т только двумя, то чем выше доля Г—Ц пар, тем стабильнее молекула. При денатурации ДНК поглощение света при длине волны 260 нм повышается (гиперхромный эффект), что позволяет легко контролировать состояние вторичной структуры ДНК.
Если раствор денатурированной ДНК медленно охлаждать, то вновь возникают слабые связи между комплементарными цепями и может получиться спиральная структура, идентичная исходной (нативной). На способности ДНК к денатурации и ренатурации основан метод молекулярной гибридизации, который применяют для изучения строения нуклеиновых кислот. Препараты ДНК, выделенные из особей, принадлежащих к разным видам, образуют несовершенные гибриды. Спиральная структура получается не по всей длине молекулы. В неспирализированных участках полинуклеотидные цепи не комплементарны друг другу. Следовательно, ДНК особей неидентична.
Структура дезоксирибонуклеиновой кислоты, ДНК.
Один полный оборот спирали включает десять пар оснований (пуриновое – пиримидиновое). Расстояние между соседними парами оснований равняется 0,34 нм
Биосинтез нуклеиновых кислот
Проблема биосинтеза нуклеиновых кислот является предметом пристального внимания многих исследователей и целых научных коллективов. Следует прежде всего отметить исключительную трудность решения этой важнейшей проблемы, связанную с неполными представлениями о природе белковых факторов и механизмах регуляции синтеза нуклеиновых кислот. До сих пор не раскрыты в деталях молекулярные механизмы передачи генетической информации, закодированной в нуклеотидной последовательности ДНК. Различают три основных этапа реализации генетической информации.
На первом этапе – этапе репликации происходит образование дочерних молекул ДНК, первичная структура которых идентична родительской ДНК (копирование ДНК). Репликация ДНК является ключевой функцией делящейся клетки и частью таких биологических процессов, как рекомбинация, транспозиция и репарация.
http://www.youtube.com/watch?v=teV62zrm2P0
http://www.youtube.com/watch?v=-mtLXpgjHL0&feature=related
На втором этапе, названном транскрипцией, генетическая информация, записанная в первичной структуре ДНК, переписывается в нуклеотидную последовательность РНК (синтез молекулы РНК на матрице ДНК).
Специальный фермент полимераза подбирает по принципу комплементарности нуклеотиды и соединяет их в единую цепочку. Если в нити ДНК стоит Тимин, то полимераза включает в цепь и-РНК Аденин, если стоит Гуанин – включает Цитозин, если Аденин – то включает Урацил (в РНК нет Тимина). По длине каждая из молекул и-РНК короче ДНК в сотни раз, т.к. она переписывает только некоторые участки цепи ( гены), необходимые для выполнения одной функции.
http://www.youtube.com/watch?v=ztPkv7wc3yU
На третьем этапе – этапе трансляции генетическая информация, содержащаяся уже в нуклеотидной последовательности молекулы РНК, переводится в аминокислотную последовательность белка. Далее представлены основные итоги исследований и наши представления о биосинтезе полимерных молекул ДНК, РНК и белка, полученные к середине
Инициация. 1. Узнавание стартового кодона (AUG), сопровождается присоединением тРНК аминоацилированной метионином (М) и сборкой рибосомы из большой и малой субъединиц.
Элонгация. 2. Узнавание текущего кодона соответствующей ему аминоацил-тРНК (комплементарное взаимодействие кодона мРНК и антикодона тРНК увеличено). 3. Присоединение аминокислоты, принесённой тРНК, к концу растущей полипептидной цепи. 4. Продвижение рибосомы вдоль матрицы, сопровождающееся высвобождением молекулы тРНК. 5. Аминоацилирование высвободившейся молекулы тРНК соответствующей ей аминоацил-тРНК-синтетазой. 6. Присоединение следующей молекулы аминоацил-тРНК, аналогично стадии (2). 7. Движение рибосомы по молекуле мРНК до стоп-кодона (в данном случае UAG).
Терминация. Узнавание рибосомой стоп-кодона сопровождается (8) отсоединением новосинтезированного белка и в некоторых случаях (9) диссоциацией рибосомы.
http://www.youtube.com/watch?v=5bLEDd-PSTQ
http://www.youtube.com/watch?v=-zb6r1MMTkc&feature=related
Биосинтез ДНК
Прежде чем изложить современные представления о механизме биосинтеза ДНК, следует представить сведения о синтезе этого соединения в бесклеточной системе, которыми располагает биохимия. Известно, что для любого синтеза полимерной органической молекулы, осуществляемого in vitro или in vivo, требуется энергия. Источником энергии в реакциях полимеризации мононуклеотидов является энергия, освобождаемая всеми четырьмя типами дезоксирибонуклеозидтрифосфатов, участвующих в синтезе ДНК. Образующийся пирофосфат под действием пирофосфатазы также расщепляется на две молекулы ортофосфата, давая дополнительную энергию для биосинтеза ДНК.
Помимо энергии, биогенез ДНК требует наличия специфических ферментов, катализирующих отдельные этапы синтеза, и множества белковых факторов, абсолютно необходимых для регулирования процесса репликации и проявления каталитической активности ферментов.
http://www.youtube.com/watch?v=teV62zrm2P0
Ферментные системы синтеза ДНК у про- и эукариот до конца не выяснены. По имеющимся данным, в репликации ДНК, включающей узнавание точки начала процесса, расплетение родительских цепей ДНК в репликационной вилке, инициацию биосинтеза дочерних цепей и дальнейшую их элонгацию и, наконец, окончание (терминация) процесса, участвует более 40 ферментов и белковых факторов, объединенных в единую ДНК-репликазную систему, называемую реплисомой.
По цепочке ДНК, например, “ездит” фермент ДНК-полимераза, копирующий молекулы ДНК. Ученые пытаются искусственно создавать подобные структуры, однако до сих пор ни одна из них не смогла сравниться с естественным аналогами. Авторы исследования утверждают, что по многим характеристикам их “молекулярная машина” превосходит остальные. Однако новая разработка может запутываться при ходьбе. Сейчас создатели работают над преодолением этой трудности.
http://www.youtube.com/watch?v=qn-JW-M89fo&feature=related
После открытия в
РНК-полимераза осуществляет синтез тРНК
Праймазы различаются как по структуре, так и по специфичности действия. Получены новые данные о существенной роли праймасомы в каталитическом действии фермента. Праймасома представлена ансамблем из 7 различных субъединиц, включающих около 20 полипептидов общей мол. массой 70000. При помощи белка n’ праймасома подвергается быстрому перемещению к отстающей цепи ДНК за счет энергии, генерируемой АТФазной активностью белка n’. В состав праймасомы входит также комплекс белков dna В и dna С, который вблизи репликационной вилки периодически участвует в формировании специфической вторичной структуры ДНК, подходящей для узнавания праймазой.
Основным ферментом, катализирующим биосинтез новообразованной ДНК (точнее, стадию элонгации репликации ДНК), является ДНК-полимераза III, представляющая собой мультимерный комплекс собственно ДНК-полимеразы (мол. масса около 900000) и ряда других белков. ДНК-полимераза III из Е. coli состоит минимум из 10 субъединиц. Одна из них – β-субъединица получена в кристаллическом виде, и выяснена ее третичная структура. Имеются доказательства, что в димерной форме ДНК-полимераза III катализирует сопряженный синтез ведущей (лидирующей) и отстающей цепей ДНК при репликации (см. далее). Более точно выяснена также роль ДНК-полимеразы I: она катализирует отщепление затравочного олигорибонуклеотидного праймера и заполнение образующихся после этого пробелов (ниш) дезоксирибонуклеотидами. Известно, что ДНК-полимеразы II из Е. coli (мол. масса 88000) выполняет «ремонтные» функции, исправляя повреждения цепей ДНК. Укажем также, что ДНК-полимераза I в качестве матрицы использует одноцепочечные участки, в то время как ДНК-полимераза III – двухцепочечные ДНК, в которых имеются короткие одноцепочечные последовательности.
Важную функцию соединения двух цепей ДНК или замыкания двух концов одной цепи ДНК в процессе репликации либо репарации ДНК выполняет особый фермент – ДНК – лигаза, катализирующая за счет энергии АТФ образование фосфодиэфирной связи между 3′-ОН-группой де-зоксирибозы одной цепи и 5′-фосфатной группой другой цепи ДНК. Функцию раскручивания (расплетения) двойной спирали ДНК в репли-кационной вилке, происходящего за счет энергии гидролиза АТФ
Расщепление молекул ДНК рестриктазой BamHI и соединение полученных фрагментов ДНК-лигазой.
Выполняет специфический rep-белок, названный хеликазой (мол. масса 300000). Образовавшиеся на определенное время одноцепочечные участки ДНК служат в качестве матрицы при репликации и стабилизируются при помощи особых белков, связывающихся с одноцепочечной ДНК (ДНК-связывающие белки) и препятствующих обратному комплементарному взаимодействию цепей ДНК (мол. масса 75600). В связи с этим их иногда называют дестабилизирующими двойную спираль белками. Имеются, кроме того, особые ферменты топоизомеразы (у прокариот одна из них названа ДНК-гиразой), которые играют особую роль в сверхспирализации, обеспечивая как репликацию, так и транскрипцию ДНК. Эти ферменты наделены способностью не только создавать супервитки, но и уничтожать суперспирализацию путем сшивания образующихся разрывов или разрезания ДНК. Наконец, открыты специальные ферменты
, «редактирующие» ДНК, т.е. осуществляющие вырезание и удаление ошибочно включенных нуклеотидов или репарирующие повреждения ДНК, вызванные физическими или химическими факторами (рентгеновское излучение, УФ-лучи, химический мутагенез и др.). Из клеток животных выделено несколько ДНК-полимераз, и в разных лабораториях они получили различные наименования. К настоящему времени у эукариот, как и у бактерий, открыто несколько ДНК-полимераз. В репликации ДНК эукариот участвуют два главных типа полимераз – α и δ. Показано, что ДНК-полимераза α состоит из 4 субъединиц и является идентичной по структуре и свойствам во всех клетках млекопитающих, причем одна из субъединиц оказалась наделенной праймазной активностью. Самая крупная субъединица ДНК-полимеразы а (мол. масса 180000) катализирует реакцию полимеризации, преимущественно синтез отстающей цепи ДНК, являясь составной частью праймасомы. ДНК-полимераза δ состоит из 2 субъединиц и преимущественно катализирует синтез ведущей цепи ДНК. Открыта также ДНК-полимераза ε, которая в ряде случаев заменяет δ-фермент, в частности при репарации ДНК (исправление нарушений ДНК, вызванных ошибками репликации или повреждающими агентами). Следует отметить, что в эукариотических клетках открыты два белковых фактора репликации, обозначаемых RFA и RFC. Фактор репликации А выполняет функцию белка – связывание одноцепочечной ДНК (наподобие белковых факторов связывания разъединенных цепей ДНК при репликации у Е. coli), фактор С – функцию стабилизатора всего репликационного комплекса. В генетической инженерии с целью получения белков в достаточных количествах и с заданными свойствами (например, для генотерапии наследственных и соматических болезней) широкое применение получили эндо-нуклеазы рестриктазы, катализирующие расщепление молекулы двух-цепочечной ДНК по специфическим нуклеотидным последовательностям внутри цепи. Рестриктазы узнают определенные 4–7-членные последовательности, вызывая, таким образом, разрывы в определенных сайтах цепи ДНК. При этом образуются не случайные последовательности, а фрагменты ДНК строго определенной структуры с липкими концами (рекомбинантные ДНК), используемые далее для конструирования гибридных молекул и получения генно-инженерной, биотехнологической продукции (например, инсулина, гормона роста, интерферона, вакцин против вируса гепатита В, СПИДа и др.).
Реализация генетической информации во всех живых клетках осуществляется в два этапа: транскрипцию и трансляцию.
Код однозначен. Каждый триплет шифрует только одну аминокислоту. У всех здоровых людей в гене, несущем информацию об одной из цепей гемоглобина, триплет ГАА или ГАГ, стоящий на шестом месте, кодирует глутаминовую кислоту. У больных серповидноклеточной анемией второй нуклеотид в этом триплете заменен на У. Как видно из таблицы генетического кода, триплеты ГУА или ГУГ, которые в этом случае образуются, кодируют аминокислоту валин. К чему приводит такая замена, вы знаете из § Генетическая информация. Удвоение ДНК. Между генами имеются знаки препинания. Каждый ген кодирует одну полипептидную цепочку. Поскольку в ряде случаев иРНК является копией нескольких генов, они должны быть отделены друг от друга. Поэтому в генетическом коде существуют три специальные триплета (УАА, УАГ, УГА), каждый из которых обозначает прекращение синтеза одной полипептидной цепи. Таким образом эти триплеты выполняют функцию знаков препинания. Они находятся в конце каждого гена.
1. Генетический код триплетен. Каждая аминокислота кодируется группой из трех нуклеотидов.
Транскрипция – биосинтез рибонуклеиновой кислоты (РНК) на матрице – дезоксирибонуклеиновой кислоте (ДНК). Транскрипция – один из фундаментальных биологических процессов, первый этап реализации генетической информации, записанной в ДНК в виде линейной последовательности 4 типов мономерных звеньев – нуклеотидов. Она осуществляется специальными ферментами, работа которых определяется так называемыми транскрипционными факторами.
Ученые остановили свой исследовательский взгляд на проблеме транскрипции молекулы ДНК, т.е. на изучении механизмов переписывания информации с ДНК на молекулу РНК, с которой уже происходит синтез белков. Процесс этот начинается с “включения” энзима РНК-полимераза (RNAP). Этот энзим синтезирует новую цепочку РНК, химически “копируя” каждый нуклеотид ДНК. При этом он перемещается вниз по молекуле до конца определенного гена, оставляя за собой новую синтезированную копию РНК. “РНКп – один из самых важных в природе энзимов, – говорит Блок. – Поэтому понимание того, как происходит копирование ДНК, очень важно для молекулярной биологии, генной инженерии и медицины. Без РНК не было бы синтеза белков, а без него – жизни вообще”.
Уже много лет известно, что РНК синтезируется постепенно – в одну единицу времени синтезируется один нуклеотид. Но остается открытым вопрос: как при этом перемещается вдоль молекулы ДНК энзим РНК-полимераза. То ли он скользит вдоль нуклеотидов, то ли перепрыгивает от одного к другому. Этот последний процесс был назван дискретным перемещением. Ученые приводят пример с чтением книги: когда глаза скользят по строке, то взгляд не останавливается на отдельных буквах, а “глотает” слова целиком, перепрыгивая от одного к другому. Нуклеотиды А, Т, Г или Ц в молекуле ДНК разделены промежутком в 3.4 ангстрема, поэтому современные микроскопы с пределом разрешения в 10 ангстрем не могли помочь узнать, как происходит перемещение энзима. Работа по улучшению “оптического пинцета” микроскопа велась исследователями почти десятилетие.
В результате транскрипции образуется один из 4 типов РНК, выполняющих различные функции: 1) информационные, или матричные, РНК, выполняющие роль матриц при синтезе белка рибосомами (трансляция); 2) рибосомальные РНК, являющиеся структурными компонентами рибосом; 3) транспортные РНК, являющиеся основными элементами, осуществляющими при синтезе белка перекодирование информации, заключённой в информационной РНК, с языка нуклеотидов на язык аминокислот; 4) РНК, играющие роль затравки репликации ДНК. Число копий разных участков ДНК зависит от потребности клеток в соответственных белках и может меняться в зависимости от условий среды или в ходе развития организма.
НЕКОТОРЫЕ СВОЙСТВА мРНК
Рибосома в процессе синтеза белка.
По своим свойствам мРНК про- и эукариот существенно различаются. Бактериальные мРНК очень нестабильны. Период их полураспада составляет всего несколько минут. Эти мРНК обычно не претерпевают существенных модификаций после синтеза и могут начинать транслироваться в белок еще до полного завершения их транскрипции. Быстрое вовлечение в белковый синтез, с одной стороны, и нестабильность мРНК бактерий – с другой, обеспечивают оперативный контроль белкового синтеза на уровне транскрипции. Содержание мРНК в бактериальной клетке составляет всего 1-2% общего количества РНК в клетке.
Транскрипция и трансляция мРНК прокариот (а); транскрипция, процессинг и трансляция мРНК эукариот
Эукариотические мРНК довольно стабильны. Период их полураспада измеряется часами и даже сутками. Их транскрипция и трансляция пространственно разобщены. Транскрипция протекает в ядре, а трансляция – в цитоплазме (рис. ). Эукариотические мРНК синтезируются в виде предшественников и проходят в своем биогенезе стадию довольно сложного созревания, или процессинга. Процессинг включает в себя: 1) кэпирование 5′-конца, заключающееся в присоединении к этому концу мРНК так называемой шапочки (кэп
Посттрансляционные модификации белков
Многие белки и секретируемые пептиды претерпевают различные структурные изменения в результате котрансляционных и посттрансляционных модификаций, т.е. во время или после завершения их синтеза рибосомами. Описано более 100 различных посттрансляционных модификаций белков . Роль большинства этих модификаций не выяснена; некоторые из них случайны и, по-видимому, не имеют функционального значения, но есть и такие, которые важны для жизни клетки, так как они тщательно контролируются специфическими ферментами. Модификации происходят в ЭР и аппарате Гольджи . В этих органеллах , например, ферменты гликозилирования добавляют к белкам сложные цепи остатков сахаров, образуя гликопротеины. Единственный известный случай гликозилирования в цитозоле клеток млекопитающих – это добавление к белкам N-ацетилглюкозамина.
Среди известных в настоящее время модификаций описана одна, чрезвычайно важная для доставки белков к месту назначения. Присоединение жирной кислоты к белку направляет его к определенным мембранам, обращенным в цитозоль. Важной функцией фосфоинозитидов является так называемая якорная функция – к ним прикрепляются многочисленные белки наружной поверхности клетки.
Определенные ковалентные модификации, происходящие в цитозоле, обратимы и служат для регуляции активности многих белков. Многие клеточные процессы регулируются путем обратимого фосфорилирования-дефосфорилирования белков. Посттрансляционные модификации включают в себя фосфорилирование факторов транскрипции протеинкиназами , гликозилирование остатков Asn в последовательностях Asn-X- [SerThr], N-концевое ацилирование, циклизацию N-концевого остатка Glu с образованием пироглутаминовой кислоты, C-концевое амидирование последовательностей освобождающихся пептидов, гидроксилирование остатков Lys и Pro, метилирование различных остатков аминокислот.
Многие из перечисленных модификаций являются критическими для биологической активности пептидов. В частности, карбоксиамидирование C-концевого Gly активирует окситоцин и вазопрессин , а перенос сульфогруппы на остаток Tyr в холецистокинине-8 оказывается критическим для проявления его активности в поджелудочной железе. N-Ацетилирование бета-эндорфина блокирует его опиоидную активность, тогда как ацетилирование меланоцитстимулирующего гормона усиливает его влияние на синтез меланинов. Поскольку большинство этих модификаций – тканеспецифические, пептиды, обладающие различной биологической активностью, должны быть доставлены к различным тканям в виде предшественников, где они претерпевают специфический процессинг.
Ингибиторы синтеза белка
Весьма интересен молекулярный механизм действия дифтерийного токсина. Он оказался наделенным способностью катализировать реакцию АДФ-рибозилирования фактора элонгации эукариот (eEF-2), выключая тем самым его из участия в синтезе белка. Резистентность многих животных к дифтерийному токсину, вероятнее всего, обусловлена трудностью или полным отсутствием проникновения (транспорта) токсина через мембрану клеток.