Химия в системе естественных наук. История развития химии. Атомно-молекулярное учение. Основные способы очистки веществ.
Классификация и номенклатура неорганических соединений. Определение молекулярной массы карбон диоксида.
Химия – наука о веществах, закономерностях их превращений (физических и химических свойствах) и применении. В настоящее время известно более 100 тыс. неорганических и более 4 млн. органических соединний.
Химические явления: одни вещества превращаются в другие, отличающиеся от исходных составом и свойствами, при этом состав ядер атомов не изменяется.
Физические явления: меняется физическое состояние веществ (парообразование, плавление, электропроводность, выделение тепла и света, ковкость и др.) или образуются новые вещества с изменением состава ядер атомов.
За степенью чистоты химические реактивы классифицируют на группы:
чистый (ч): содержание основного вещества ³ 98 %, содержание примесей 0,01- 0,5%;
чистый для анализа (ч.д.а): содержание основного вещества ³ 99 %, содержание примесей до 0.1 %;
химически чистый (х.ч): содержание основного вещества ³ 99 %, содержание примесей 10-3-10-5 %;
Особенно чистый (о.с.ч): содержание основного вещества 100 %, содержание примесей 10-5-10-10 %.
Виды реакций
Все химические реакции подразделяют на простые и сложные. Простые химические реакции, в свою очередь, обычно подразделяют на четыре типа: реакции соединения, реакции разложения, реакции замещения и реакции обмена.
Д. И. Менделеев определял соединение как реакцию, «при которой из двух веществ происходит одно. Примером химической реакции соединения может служить нагревание порошков железа и серы, – при этом образуется сульфид железа: Fe+S=FeS. К реакциям соединения относят процессы горения простых веществ (серы, фосфора, углерода,…) на воздухе. Например, углерод горит на воздухе С+О2=СО2 (конечно эта реакция протекает постепенно, сначала образуется угарный газ СО). Реакции горения всегда сопровождаются выделением тепла — являются экзотермическими.
Химические реакции разложения, по Менделееву, «составляют случаи, обратные соединению, то есть такие, при которых одно вещество даёт два, или, вообще, данное число веществ — большее их число. Примером реакции разложение меже служить химическая реакция разложения мела (или известняка под воздействием температуры): СаСО3=СаО+СО2. Для проведения реакции разложения, как правило, требуется нагревание. Такие процессы — эндотермические, т. е. протекают с поглощением теплоты.
В реакциях двух других типов число реагентов равно числу продуктов. Если взаимодействуют простое вещество и сложное —то эта химическая реакция называется химической реакцией замещения: Например опустив стальной гвоздь в раствор медного купороса получаем железный купорос (здесь железо вытеснило медь из её соли) Fe+CuSO4= FeSO4+Cu.
Реакции между двумя сложными веществами, при которых они обмениваются своими частями, относят к химическим реакциям обмена. Большое их число протекает в водных растворах. Примером химической реакции обмена может служить нейтрализация кислоты щёлочью: NaOH+HCl=NaCl+Н2О. Здесь в реагентах (веществах, стоящих слева) ион водорода из соединения HCl обменивается с ионом натрия из соединения NaOH, в результате чего образуется раствор поваренной соли в воде.
Однако очень многие реакции не укладываются в приведённую простую схему. Например, химическая реакция между перманганатом калия (марганцовкой) и иодидом натрия не может быть отнесена ни к одному из указанных типов. Такие реакции, обычно, называют окислительно – восстановительные реакции, например:
2KMnO4+10NaI+8H2SO4=2MnSO4+K2SO4+5Na2SO4+5I2+8H2O.
Признаки химических реакций
Признаки химических реакций. По ним можно судить, прошла ли химическая реакция между реагентами или нет. К таким признакам принято относить следующие:
– Изменение цвета (например, светлое железо покрывается во влажном воздухе бурым налётом оксида железа – химическая реакция взаимодействия железа с кислородом).
– Выпадение осадка (например, если через известковый раствор (раствор гидроксида кальция) пропустить углекислый газ, выпадет белый нерастворимый осадок карбоната кальция).
– Выделение газа (например, если капнуть лимонной кислотой на пищевую соду, то выделится углекислый газ).
– Образование слабодиссоциированных веществ (например, реакции, при которых одним из продуктов реакции является вода).
– Свечение раствора.
Примером свечения раствора может служить реакция с использованием такого реагента как раствор люминола (люминол- это сложное химическое вещество, которое может излучать свет при химических реакциях).
Окислительно-восстановительные реакции
Окислительно-восстановительные реакции – составляют особый класс химических реакций. Их характерной особенностью является изменение степени окисления, по крайней мере, пары атомов: окисление одного (потеря электронов) и восстановление другого (присоединение электронов).
Сложные вещества, понижающие свою степень окисления – окислители, а повышающие степень окисления – восстановители. Например:
2Na + Cl2 = 2NaCl,
– здесь окислитель – хлор (он присоединяет к себе электроны), а восстановитель – натрий (он отдаёт электроны).
Реакция замещения NaBr-1+ Cl20 = 2NaCl-1 + Br20 (характерна для галогенов) тоже относится к окислительно -восстановительным реакциям. Здесь хлор – окислитель (принимает 1 электрон), а бромид натрия (NaBr) – восстановитель (атом брома отдаёт электрон). Реакция разложения дихромата аммония ((NH4)2Cr2O7) тоже относится к окислительно-восстановительным реакциям:
(N-3H4)2Cr2+6O7=N20 + Cr2+3O3 + 4H2O
Ещё одна из распространённых классификаций химических реакций – это их разделение по тепловому эффекту. Разделяют эндотермические реакции и экзотермические реакции. Эндотермические реакции – химические реакции, сопровождающиеся поглощением окружающего тепла (вспомните охлаждающие смеси). Экзотермические (наоборот) – химические реакции, сопровождающиеся выделением тепла (например – горение).
Признаки и условия протекания химических реакций
На протяжении всей жизни мы постоянно сталкиваемся с физическими и химическими явлениями. Природные физические явления для нас столь привычны, что мы уже давно не придаём им особого значения. Химические реакции постоянно протекают в нашем организме. Энергия, которая выделяется при химических реакциях, постоянно используется в быту, на производстве, при запуске космических кораблей. Многие материалы, из которых изготовлены окружающие нас вещи, не взяты в природе в готовом виде, а изготовлены с помощью химических реакций. В быту для нас не имеет особого смысла разбираться в том, что же произошло. Но при изучении физики и химии на достаточном уровне без этих знаний не обойтись. Как отличить физические явления от химических? Существуют ли какие-либо признаки, которые могут помочь это сделать?
При химических реакциях из одних веществ образуются новые, отличные от исходных. По исчезновению признаков первых и появлению признаков вторых, а также по выделению или поглощению энергии мы заключаем, что произошла химическая реакция.
Если прокалить медную пластинку, на её поверхности появляется чёрный налёт; при продувании углекислого газа через известковую воду выпадает белый осадок; когда горит древесина, появляются капли воды на холодных стенках сосуда, при горении магния получается порошок белого цвета.
Выходит, что признаками химической реакций являются изменение окраски, запаха, образование осадка, появление газа.
При рассмотрении химических реакций, необходимо обращать внимание не только на то, как они протекают, но и на условия, которые должны выполняться для начала и течения реакции.
Итак, какие же условия должны быть выполнены для того, чтобы началась химическая реакция?
Для этого прежде всего необходимы реагирующие вещества привести к соприкосновению (соединить, смешать их). Чем более измельчены вещества, чем больше поверхность их соприкосновения, тем быстрее и активнее протекает реакция между ними. Например, кусковой сахар трудно поджечь, но измельчённый и распылённый в воздухе он сгорает за считанные доли секунды, образуя своеобразный взрыв.
С помощью растворения мы можем раздробить вещество на мельчайшие частицы. Иногда предварительное растворение исходных веществ облегчает проведение химической реакции между веществами.
В некоторых случаях соприкосновение веществ, например, железа с влажным воздухом, достаточно, чтобы произошла реакция. Но чаще одного соприкосновения веществ для этого недостаточно: необходимо выполнение ещё каких-либо условий.
Так, медь не вступает в реакцию с кислородом воздуха при невысокой температуре около 20˚-25˚С. Чтобы вызвать реакцию соединения меди с кислородом, необходимо прибегнуть к нагреванию.
На возникновение химических реакций нагревание влияет по – разному. Для одних реакций требуется непрерывное нагревание. Прекращается нагревание – прекращается и химическая реакция. Например, для разложения сахара необходимо постоянное нагревание.
В других случаях нагревание требуется лишь для возникновения реакции, оно даёт толчок, а далее реакция протекает без нагревания. Например, такое нагревание мы наблюдаем при горении магния, древесины и других горючих веществ.
Неорганическая химия, наука о химических элементах и образуемых ими простых и сложных веществах (кроме соединений углерода, составляющих, за немногими исключениями, предмет органической химии). Неорганическая химия — важнейшая область химии — науки о превращениях вещества, сопровождающихся изменениями его состава, свойств и (или) строения. Неорганическая химия теснейшим образом связана, помимо органической химии, с др. разделами химии — аналитической химией, коллоидной химией, кристаллохимией, физической химией, термодинамикой химической, электрохимией, радиохимией, химической физикой; на стыке неорганической и органической химии лежит химия металлоорганических соединений и элементоорганических соединений. Неорганическая химия ближайшим образом соприкасается с геолого-минералогическими науками, особенно с геохимией и минералогией, а также с техническими науками — химической технологией (её неорганической частью), металлургией — и агрохимией. В неорганической химии постоянно применяются теоретические представления и экспериментальные методы физики.
Историческая справка. История неорганической химии, особенно до середины 19 в., тесно переплетается с общей историей химических знаний. Важнейшие достижения химии конца 18 — начала 19 вв. (создание кислородной теории горения, химической атомистики, открытие основных стехиометрических законов) явились результатами изучения неорганических веществ.
Уже в глубокой древности были известны металлы, которые либо встречаются в природе в самородном состоянии (Au, Ag, Cu, Hg), либо легко получаются (Cu, Sn, Pb) нагреванием их окисленных руд с углем, а также некоторые неметаллы (углерод в виде угля и алмаза, S, возможно As). За 3—2 тыс. лет до н. э. в Египте, Индии, Китае и др. странах умели получать железо из руд, изготовлять изделия из стекла.
Стремление превратить неблагородные, «несовершенные» металлы в благородные, «совершенные» (Au и Ag) явилось причиной возникновения алхимии, господствовавшей в 4—16 вв. н. э. Алхимики создали аппаратуру для химических операций (выпаривания, кристаллизации, фильтрования, перегонки, возгонки), которые и в наше время служат для разделения и очистки веществ; впервые получили некоторые простые вещества (As, Sb, Р), соляную, серную и азотную кислоты, многие соли (купоросы, квасцы, нашатырь) и др. неорганические вещества. В 16 в. металлургия, керамика, стеклоделие и др. производства, близко соприкасающиеся с неорганической химией, получили довольно широкое развитие, что видно из трудов В. Бирингуччо (1540) и Г. Агриколы (1556). В 1530-х гг. А. Т. Парацельс, которому были на опыте известны целебные свойства препаратов Au, Hg, Sb, Pb, Zn, положил начало ятрохимии — применению химии в медицине. В 17 в. укоренилось деление веществ, изучаемых химией, на минеральные, растительные и животные (указанное в 10 в. арабским учёным ар-Рази), т. е. наметилось расчленение химии на неорганическую и органическую. В 1661 Р. Бойль опроверг учения о четырёх стихиях и трёх началах, из которых якобы состоят все тела, и определил химические элементы как вещества, не могущие быть разложенными на другие. В конце 17 в. Г. Шталь, развивая представления И. Бехера, высказал гипотезу, согласно которой при обжигании и горении тела теряют начало горючести — флогистон. Эта гипотеза господствовала вплоть до конца 18 в.
В дальнейшем становлению неорганической химии как науки послужили работы М. В. Ломоносова и А. Лавуазье. Ломоносов сформулировал закон сохранения вещества и движения (1748), определил химию как науку об изменениях, происходящих в сложных веществах, приложил атомистические представления к объяснению химических явлений, предложил (1752) деление веществ на органические и неорганические, показал, что увеличение веса металлов при обжигании происходит за счёт присоединения некоторой части воздуха (1756), Лавуазье опроверг гипотезу флогистона, показал роль кислорода в процессах обжигания и горения, конкретизировал понятие химического элемента, создал первую рациональную номенклатуру химическую (1787). В начале 19 в. Дж. Дальтон ввёл в химию атомизм, открыл кратных отношений закон и дал первую таблицу атомных весов химических элементов. Тогда же были открыты Гей-Люссака законы (1805—08), постоянства состава закон (Ж. Пруст, 1808) и Авогадро закон (1811). В 1-й половине 19 в. И. Берцелиус окончательно утвердил атомизм в химии. В середине 19 в. были сформулированы и разграничены понятия атома, молекулы и эквивалента (Ш. Жерар, С. Канниццаро). К тому времени было известно свыше 60 химических элементов. Проблему их рациональной классификации разрешило открытие в 1869 периодического закона Менделеева и построение периодической системы элементов Менделеева. На основе своих открытий Д. И. Менделеев исправил атомные веса многих элементов и предсказал атомные веса и свойства ещё неизвестных тогда элементов — Ga, Ge, Sc и др. После их открытия периодический закон получил всеобщее признание и стал прочной научной основой химии.
В конце 19 — начале 20 вв. особое внимание химиков-неоргаников привлекли две малоизведанные области — металлические сплавы и комплексные соединения. Исследование полированной и протравленной поверхности стали при помощи микроскопа, начатое в 1831 П. П. Аносовым, было продолжено Г. К. Сорби (1863), Д. К. Черновым (1868), немецким учёным А. Мартенсом (с 1878). Оно было усовершенствовано, а также существенно дополнено методом термического анализа (А. Ле Шателье, Ф. Осмондом — в 1887, английским учёным У. Робертс-Остоном — в 1899). В дальнейшем крупнейшие работы по исследованию сплавов с применением новой методики были выполнены Н. С. Курнаковым (с 1899), А. А. Байковым (с 1900) и их научными школами. Обширные исследования сплавов были проведены в Германии Г. Тамманом (с 1903) и его учениками. Теоретическую основу учения о сплавах дало правило фаз Дж. У. Гиббса. Систематические исследования комплексных соединений, предпринятые в 1860-х гг. К. Бломстрандом и датским учёным С. Йёргенсеном, были в 1890-гг. развиты А. Вернером, создавшим координационную теорию, и Н. С. Курнаковым. Особенно широко работы в этой области были поставлены в России и СССР Л. А. Чугаевым и его школой.
На рубеже 19 и 20 вв. в истории неорганической химии произошло крупное событие — были открыты инертные газы: Ar (Дж. Рэлей, У. Рамзай, 1894), Не (У. Рамзай, 1895), Kr, Ne, Xe (английские учёные У. Рамзай и М. Траверс, 1898), Rn (немецкий учёный Ф. Дорн, 1900), которые Д. И. Менделеев по предложению У. Рамзая включил в особую (нулевую) группу своей периодической системы элементов (впоследствии были включены в 8-ю группу). Ещё более значительным было открытие самопроизвольной радиоактивности урана (А. Беккерель, 1896) и тория (М. Склодовская-Кюри и независимо немецкий учёный Г. Шмидт, 1898), за которым последовало открытие радиоактивных элементов Po и Ra (М. Склодовская-Кюри, П. Кюри, 1898). Эти открытия привели к обнаружению существования изотопов, к созданию радиохимии и теории строения атома (Э. Резерфорд, 1911, Н. Бор, 1913, и др.; см. Атомная физика).
Успехи ядерной физики позволили синтезировать трансурановые элементы, имеющие атомные номера от 93 по 105 (см. Актиноиды, Элементы химические, Ядерная химия). Работы по синтезу трансурановых элементов открыли новую эпоху в истории неорганической химии. Исследования в этой области ведутся в СССР, США, Франции, ФРГ и некоторых др. странах.
Методы исследования. В неорганической химии применяются два основных приёма исследования: препаративный метод и метод физико-химического анализа. Препаративный метод практиковался с древнейших времён. Его основу составляют проведение реакций между исходными веществами и разделение образующихся продуктов посредством перегонки, возгонки, кристаллизации, фильтрования и др. операций. Особенно распространён препаративный метод в химии комплексных соединений. Метод физико-химического анализа в основном создан Н. С. Курнаковым, его учениками и последователями. Сущность метода заключается в измерении различных физических свойств (температур начала и конца кристаллизации, а также электропроводности, твёрдости и др.) систем из 2, 3 или многих компонентов. Полученные данные изображают в виде диаграмм состав-свойство. Их геометрический анализ позволяет судить о составе и природе образующихся в системе продуктов, не выделяя и не анализируя их. Физико-химический анализ указывает пути синтеза веществ, даёт научную основу процессов переработки руд, получения солей, металлов, сплавов и др. важных технических материалов. Физико-химический анализ признан во всём мире ведущим методом неорганической химии.
Для современной неорганической химии характерен необычайно обширный круг новых методов исследования строения и свойств веществ и материалов. С середины 20 в. основное внимание уделяется изучению атомного и молекулярного строения неорганических соединений прямым определением их структуры (т. е. взаимного расположения атомов в молекуле). Оно производится методами кристаллохимии, спектроскопии, рентгеновского структурного анализа, ядерного магнитного резонанса, ядерного квадрупольного резонанса, гамма-спектроскопии, электронного парамагнитного резонанса и др. Большое значение имеет определение важных для техники свойств и особенностей (механические, магнитные, электрические и оптические свойства, жаропрочность, жаростойкость, отношение к радиоактивному облучению и др.). Неорганическая химия превратилась в такую науку о неорганических материалах, которая основывается преимущественно на данных о строении веществ на атомном и молекулярном уровнях.
Успехи неорганической химии. Открытие трансурановых элементов, эффективное разделение (посредством хроматографии, экстрагирования и др.) редкоземельных и иных трудно разделимых элементов (например, платиновых металлов) на индивидуально-чистые, экономичное получение редких элементов и материалов из них с особыми свойствами или заданным комплексом свойств привели к качественным изменениям в неорганической химии. Необходимо также отметить прогресс в технологии получения высокочистых элементов и соединений; получение из них и применение монокристаллов с определёнными свойствами (например, пьезоэлектриков, диэлектриков, полупроводников, сверхпроводников, кристаллов для лазеров и др.) составило специальную ветвь промышленности. Особенно быстро развивается химия редких элементов. В 60-е годы возникла химия инертных газов, которые ранее считались неспособными к химическому взаимодействию; получены многие соединения Kr, Xe и Rn с фтором, окислы Xe и др.
В современной неорганической химии очень большое внимание уделяется изучению химической связи — важнейшей характеристике любого химического соединения. С помощью физической аппаратуры удаётся как бы «видеть» химическую связь. Методы кристаллографии, порой весьма трудоёмкие, заменяются скоростными методами (с применением, например, автоматических дифрактометров в сочетании с ЭВМ). Это позволяет для неорганических соединений быстро определять межатомные расстояния (и оценить электронную плотность), на основании чего можно составить более полное представление о строении молекул и рассчитать их свойства. Ещё более подробные сведения о химической связи можно получить с помощью рентгеноэлектронной спектроскопии. Разработка новых физических методов и интерпретация получаемых результатов требуют совместной работы химиков-неоргаников, физиков и математиков. На основе представлений и методов квантовой механики всё более успешно рассматриваются проблемы строения и реакционной способности химических соединений и вопросы химической связи (см. Валентность, Квантовая химия).
Неорганические вещества и материалы используются в различных рабочих условиях, при интенсивном воздействии среды (газов, жидкостей), механических нагрузок и др. факторов. Поэтому важное значение имеет изучение кинетики неорганических реакций, в частности при разработке новых технологий и материалов (см. Кинетика химическая, Макрокинетика).
Практические применения. Неорганическая химия даёт новые виды горючего для авиации и космических ракет, вещества, препятствующие обледенению самолётов, а также посадочных полос на аэродромах. Она создаёт новые твёрдые и сверхтвёрдые материалы для абразивных и режущих инструментов. Так, использование в них компактного кубического бора нитрида (боразона) позволяет обрабатывать очень твёрдые сплавы при таких высоких температурах и скоростях, при которых алмазные резцы сгорают. Получены новые составы флюсов для сварки металлов; новые комплексные соединения, применяемые в технологии, сельском хозяйстве и медицине; новые строительные материалы, в том числе значительно облегчённые (например, на основе или с участием фосфатов), новые полупроводниковые и лазерные материалы, жаропрочные металлические сплавы, новые минеральные удобрения и многое другое. Неорганическая химия удовлетворяет самые разнообразные запросы практики, весьма бурно развивается и принадлежит к важнейшим основам научно-технического прогресса.
Научные учреждения, общественные организации, периодические издания. До 1917 исследования по неорганической химии велись в России лишь в лабораториях АН и вузов (горного, политехнического и электротехнического институтов в Петербурге, университетов в Петербурге, Москве, Казани, Киеве, Одессе). В 1918 начали свою деятельность основанные при АН в Петрограде институт физико-химического анализа (основатель Н. С. Курнаков) и институт по изучению платины и др. благородных металлов (основатель Л. А. Чугаев). В 1934 оба эти института и Лаборатория общей химии АН СССР объединены в институт общей и неорганической химии АН СССР (в 1944 ему присвоено имя Н. С. Курнакова). О др. институтах см. Химические институты научно-исследовательские. Проблемы неорганической химии рассматриваются на конгрессах Международного союза теоретической и прикладной химии, который имеет секцию неорганической химии, и на съездах национальных химических обществ, в том числе Химического общества имени Д. И. Менделеева.
Работы по неорганической химии в 18—19 вв. публиковались (и продолжают публиковаться) в химических журналах, а также в изданиях национальной АН, университетов, высших технических школ и научно-исследовательских институтов. В связи с быстрым развитием неорганической химии в 1892 в Германии был основан «Zeitschrift fur anorganische (с 1915 «… und allgemeine») Chemie». С 1962 в США выходит журнал «Inorganic Chemistry». В СССР работы по неорганической химии печатались в основанных в 1919 «Известиях Института (с 1935 — Сектора) физико-химического анализа» и «Известиях Института (с 1935 — Сектора) по изучению платины и других благородных металлов». В 1956 оба издания объединены в «Журнал неорганической химии».
В настоящее время известно более 118 химических элементов: по различным источникам, в природе встречаются от 88 до 94. Химические элементы образуют огромное количество неорганических соединений. Хотя каждому соединению присущи свои особенности, свои специфические свойства, имеется целый ряд веществ с некоторыми сходными, общими свойствами. Исходя из общности свойств, соединения объединяют в группы, классы, то есть классифицируют их, что облегчает изучение многообразия веществ.
Вспомним, что, исходя их состава молекул, вещества делятся на простые и сложные.
Простые вещества – вещества, молекулы которых состоят из атомов одного вида (атомов одного элемента). В химических реакциях не могут разлагаться с образованием других веществ.
Сложные вещества (или химические соединения) – вещества, молекулы которых состоят из атомов разного вида (атомов различных химических элементов). В химических реакциях разлагаются с образованием нескольких других веществ.
Простые вещества разбиваются на две большие группы: металлы и неметаллы.
Металлы – группа элементов, обладающая характернымиметаллическими свойствами: твёрдые вещества (исключение составляет ртуть) имеют металлический блеск, являются хорошими проводниками теплоты и электричества, ковкие (железо (Fe), медь (Cu), алюминий (Al), ртуть (Hg), золото (Au), серебро (Ag) и др.).
Неметаллы – группа элементов: твёрдые, жидкие (бром) и газообразные веществ, которые не обладают металлическим блеском, являются изоляторы, хрупкие.
А сложные вещества в свою очередь подразделятся на четыре группы, или класса: оксиды, основания, кислоты и соли.
Оксиды – это сложные вещества, в состав молекул которых входят атомы кислорода и какого – нибудь другого вещества.
Характер оксидов
Характер элемента |
Степень окисления |
Характер оксида |
Примеры |
Неметалл |
+1, +2 +3…+7 |
Всегда кислотный |
Br2O; Cl2O7; P2O5; SO3 |
Металл |
+1 |
Основной |
Li2O; Rb2O; CaO; BaO; |
+2 |
Основной |
MnO; |
|
Амфотерный |
ZnO; PbO; BeO; SnO |
||
+3 |
Основной |
Bi2O3 |
|
Амфотерный |
Al2O3; Cr2O3; Sb2O3;Fe2O3 |
||
+4 |
Чаще амфотерный |
PbO2; MnO2; TiO2; ZiO2 |
|
+5 |
Амфотерный |
Ta2O5 |
|
+6 |
Кислотный |
CrO3 |
|
+7 |
Кислотный |
Mn2O7 |
|
+8 |
Кислотный |
OsO4 |
Основания – это сложные вещества, в которых атомы металлов соединены с одной или несколькими гидроксильными группами.
С точки зрения теории электролитической диссоциации, основания – сложные вещества, при диссоциации которых в водном растворе образуются катионы металла (или NH4+) и гидроксид – анионы OH-.
Кислоты – это сложные вещества, в состав молекул которых входят атомы водорода, способные замещаться или обмениваться на атомы металла.
Соли – это сложные вещества, молекулы которых состоят из атомов металлов и кислотных остатков. Соль представляет собой продукт частичного или полного замещения атомов водорода кислоты металлом.
Простые вещества — вещества, состоящие исключительно из атомов одного химического элемента (из гомоядерных молекул), в отличие от сложных веществ. Являются формой существования химических элементов в свободном виде; или, иначе говоря, элементы, не связанные химически ни с каким другим элементом, образуют простые вещества. Известно свыше 400 разновидностей простых веществ.
В зависимости от типа химической связи между атомами простые вещества могут быть металлами (Na, Mg, Al, Bi и др.) и неметаллами (H2, N2, Br2, Si и др.).
Примеры простых веществ: молекулярные (O2, O3, H2, Cl2) и атомарные (He, Ar) газы; различные формы углерода, иод (I2), металлы (не в виде сплавов).
ОКСИДЫ, соединения элементов с кислородом. В оксидах степень окисления атома кислорода —2. К оксидам относятся все соед. элементов с кислородом, кроме содержащих атомы О, соединенные друг с другом (пероксиды, надпероксиды, озо-ниды), и соед. фтора с кислородом (OF2 и др.). Последние следует называть не оксидами, а фторидами кислорода, т. к. степень окисления кислорода в них положительная.
При комнатной т-ре большинство оксиды-твердые в-ва (СаО, Fe2O3 и др.), нек-рые-жидкости (Н2О, Сl2О7 и др.) и газы (NO, SO2 и др.). Хим. связь в оксидах-ионная и ионно-ковалент-ная. Т-ры плавления и кипения оксидов понижаются с возрастанием в них доли ковалентной связи. Многим оксидам в твердом состоянии присущ полиморфизм. Нек-рые оксиды элементов III, IV, V гр. (напр., В, Si, As, Р) образуют рентгеноаморфные стекла. Оксиды s- и p-элементов (напр., MgO, Аl2О3, SiO2)-диэлектрики, оксиды переходных металлов (Fe, Сг и др.) часто обладают св-вами полупроводников. Нек-рые оксиды-пьезоэлектрики (напр., кварц), ферромагнетики [оксиды Fe, Cr(IV) и др.]. Вследствие своей многочисленности, разнообразия св-в и доступности оксиды представляют исключительно важный класс неорг. в-в.
Большинство оксидов-солеобразующие; при солеобразовании, протекающем обычно при нагр. (напр., Na2O + SiO2 Na2SiO3), степени окисления элементов не изменяются. Известно неск. несолеобразующих оксидов (напр., NO), не вступающих в подобные р-ции. Солеобразующие оксиды подразделяют на основные, кислотные и амфотерные. Элемент основного оксида (Li2O, BaO и др.) при образовании соли (напр., ВаО + SO3 BaSO4) становится катионом, элемент кислотного оксида (напр., SO3, NO2, P2O5) входит в состав кислородсодержащего аниона соли. Амфотерные оксиды (напр., ZnO, BeO, А12О3) могут реагировать и как основные оксиды, и как кислотные.
Уменьшение степени окисления элемента и увеличение радиуса его иона делает оксид более основным, наоборот, увеличение степени окисления и уменьшение ионного радиуса-более кислотным (напр., МnО- основной оксид, Мn2О7-кислотный). Многие оксиды, напр. Рb3О4, Fe3O4, содержащие элемент в разных степенях окисления, являются двойными оксидами: (PbII2, PbIV)O4, (FeII, FeIII2)O4. Среди оксидов, особенно среди оксидов d-элементов, много нестехиометрич.
Оксиды щелочных и щел.-зем. металлов активно реагируют с водой, образуя щелочи, напр.: К2О + Н2О 2КОН; нек-рые кислотные оксиды -ангидриды неорганических кислот-активно взаимод. с водой, давая к-ты, напр.: SO3 + Н2О H2SO4. Большинство оксидов металлов в компактном состоянии при комнатной т-ре с водой не реагируют. Основные оксиды обычно быстро реагируют с к-тами в р-ре с образованием солей.
Восстановители (С, Н2, активные металлы, в частности Mg, Al) при нагр. восстанавливают многие оксиды до металла.
При сильном нагревании оксидов с углеродом часто образуются карбиды (напр., СаО + ЗС СаС2 + СО), при хлорировании смеси оксидов с углем-хлориды (напр., В2О3 + ЗС + + ЗСl2 2ВСl3 + 3СО).
Оксиды широко распространены в природе. В очень больших кол-вах встречаются Н2О и SiO2. Мн. минералы являются оксидами (гематит Fe2O3, магнетит Fe3O4, касситерит SnO2 и др.).
Многие оксиды образуются при взаимод. простых в-в с кислородом (Li2O, СаО, La2O3, SO2 и др.). Оксиды металлов обычно получают термич. разложением гидроксидов, карбонатов, нитратов и др. солей кислородсодержащих к-т (напр., СаСО3 СаО + СО2), анодным окислением металлов, оксиды неметаллов – окислением кислородом водородсодержащих соед. неметаллов (напр., 2H2S 4+ 3О2 2SO2 + 2H2O). В пром-сти в больших кол-вах получают СаО, Аl2О3, MgO, SO3, CO, CO2, NO и другие оксиды. Используют оксиды как огнеупоры (SiO2, MgO, Al2O3 и др.), адсорбенты (SiO2-сшгака-гель, Аl2О3 и др.), катализаторы (V2O5, Al2O3 и др.), в произ-ве строит. материалов, стекол, фарфора, фаянса, магн. материалов, пьезоэлектриков и др. Оксиды металлов (Fe, Ni, Al, Sn и др.)-сырье в произ-ве металлов, оксиды неметаллов (напр., S, Р, N)- в произ-ве соответствующих к-т.
Кисло́ты — химические соединения, способные отдавать катион водорода (кислоты Брёнстеда) либо соединения, способные принимать электронную пару с образованием ковалентной связи (кислоты Льюиса).
В быту и технике под кислотами обычно подразумеваются кислоты Брёнстеда, образующие в водных растворах избыток ионов гидроксония H3O+. Присутствие этих ионов обуславливает кислый вкус растворов кислот, способность менять окраску индикаторов и, в высоких концентрациях, раздражающее действие кислот. Подвижные атомы водорода кислот способны замещаться на атомы металлов с образованием солей, содержащих катионы металлов и анионы кислотного остатка.
Классификация кислот
Окрашивание индикаторной бумаги в растворе хлороводородной кислоты.
Кроме подразделения на кислоты Льюиса и кислоты Брёнстеда, последние принято классифицировать по различным формальным признакам:
По содержанию атомов кислорода:
бескислородные (HCl, H2S);
кислородсодержащие (HNO3, H2SO4).
По количеству кислых атомов водорода:
одноосновные (HNO3);
двухосновные (H2SeO4);
трёхосновные (H3PO4, H3BO3);
многоосновные.
По силе
Сильные — диссоциируют практически полностью, константы диссоциации больше 1·10−3 (HNO3);
Слабые — константа диссоциации меньше 1·10−3 (уксусная кислота Kд= 1,7·10−5).
По устойчивости
Устойчивые (H2SO4);
Неустойчивые (H2CO3).
По принадлежности к классам химических соединений
Неорганические (HBr);
Органические (HCOOH,CH3COOH);
По летучести
Летучие (HNO3,H2S, HCl);
Нелетучие (H2SO4) ;
По растворимости в воде
Растворимые (H2SO4);
Нерастворимые (H2SiO3);
Номенклатура кислот
Номенклатура неорганических кислот
Названия кислородсодержащих кислот состоят из двух частей: собственного названия кислоты, выраженного прилагательным, и группового слова кислота (серная кислота, фосфорная кислота). Собственное название кислоты образуется от русского названия кислотообразующего элемента путём добавления различных суффиксов:
–н-, -ов-, -ев- (если элемент находится в единственной или высшей степени окисления);
промежуточная степень окисления +5 обозначается суффиксом -новат- (хлорноватая кислота HClO3, иодноватая кислота HIO3);
промежуточные степени окисления +3 и +4 обозначаются суффиксом -(ов)ист- (мышьяковистая кислота HAsO2, хлористая кислота HClO2);
степень окисления +1 обозначается суффиксом -новатист- (азотноватистая кислота H2N2O2, хлорноватистая кислота HClO).
Если кислотообразующий элемент в двух кислотах находится в одной и той же степени окисления, но кислоты отличаются по «содержанию воды», то для кислоты с меньшим содержанием кислорода к названию добавляют приставку мета-, а для кислоты с большим содержанием кислорода — приставку орто-, например, метафосфорная кислота HPO3 и ортофосфорная кислота H3PO4.
Кислородсодержащие кислоты с несколькими кислотообразующими элементами называются изополикислотами. Их обычно называют традиционными названиями (дифосфорная кислота H4P2O7, дисерная кислота H2S2O7).
Кислоты, в которых атомы кислорода заменены на атомы серы, называются тиокислотами и имеют соответствующую приставку тио- (тиофосфорная кислота H3PO3S). Если гидроксильные группы кислоты или атомы кислорода замещены на атомы галогенов или аминогруппу, то к названию также добавляется соответствующая приставка (амидофосфорная кислота H2PO3NH2), а замещённые серные кислоты по традиции называют сульфоновыми (хлорсульфоновая кислота ClSO3H).
Кислоты с пероксидным мостиком -O-O- относятся к пероксокислотам и имеют приставку пероксо- (пероксомоносерная кислота H2SO5) либо над- (надсерная кислота).
В систематических названиях кислот к корню латинского названия кислотообразующего элемента добавляют суффикс -ат, а названия остальных элементов или их групп в анионе обозначаются приставками. В скобках указывают степень окисления кислотообразующего элемента, если она имеет целочисленное значение. В противном случае в название включают и число атомов водорода: HClO4 — тетраоксохлорат(VII) водорода (хлорная кислота), HAuCl4 — тетрахлороаурат(III) водорода (золотохлористоводородная кислота), H[Sb(OH)6] — гексагидроксостибат(V) водорода и т. д.
Номенклатура органических кислот
Традиционно для простейших карбоновых кислот наиболее распространены тривиальные названия, некоторые из которых образовались ещё в XVII веке (уксусная кислота, масляная кислота, адипиновая кислота, фталевая кислота). Высшие карбоновые кислоты с чётным числом атомов углерода также имеют тривиальные названия, которые, однако, так сходны, что их употребление может вызывать путаницу (каприловая кислота, каприновая кислота).
Систематические названия карбоновых кислот образуются путём добавления окончания -овая кислота к названию соответствующего кислоте алкана (гексановая кислота, пентакозановая кислота). В случае дикарбоновых кислот используется окончание -диовая кислота (декандиовая кислота). Иногда название более удобно образовывать при помощи окончания -карбоновая кислота, которое означает замену одного атома водорода в соединении на карбоксильную группу. Такой подход применяется в тех случаях, когда карбоксильная группа присоединена к циклической системе (циклопропанкарбоновая кислота).
Если в карбоновой кислоте содержится пероксидный мостик, то к названию таких кислот добавляются приставки перокси-, пер- или над- (надуксусная кислота, пероксибензойная кислота).
Для обозначения серосодержащих органических кислот используют окончания -сульфоновая кислота (RSO3H), -сульфиновая кислота (RSO2H), -сульфеновая кислота (RSOH), аналогичным образом добавляя их к названию родоначального алкана RH.
Основание — это химическое соединение, способное образовывать ковалентную связь с протоном (основание Брёнстеда ) либо с вакантной орбиталью другого химического соединения (основание Льюиса ). В узком смысле под основаниями понимают основные гидроксиды — сложные вещества, при диссоциации которых в водных растворах отщепляется только один вид анионов — гидроксид-ионы OH–
Понятие основания сформировалось в XVII веке и было впервые введено в химию французским химиком Гийомом Франсуа Руэлем в 1754 году. Он отметил, что кислоты, известные в те времена как летучие жидкости (например, уксусная или соляная кислоты), превращаются в кристаллические соли только в сочетании с конкретными веществами. Руэль предположил, что такие вещества служат «основаниями» для образования солей в твёрдой форме.
Единая теория кислот и оснований была впервые представлена шведским физикохимиком С. Аррениусом в 1887 году. В рамках своей теории Аррениус определял кислоту как вещество, при диссоциации которого образуются протоны H+, а основание — как вещество, дающее при диссоциации гидроксид-ионы OH-. Теория Аррениуса, однако имела свои недостатки, например, она не учитывала влияние растворителя на кислотно-основное равновесие, а также была неприменима к неводным растворам.
В 1924 году Э. Франклином была создана сольвентная теория, согласно которой основание определялось как соединение, которое при диссоциации увеличивает число тех же анионов, которые образуются при диссоциации растворителя.
С 1923 года основание стали определять в рамках теорий Брёнстеда — Лоури и Льюиса, которые широко применяются и в настоящее время.
Основание в теории Брёнстеда — Лоури
В протонной теории кислот и оснований, выдвинутой в
Кислота Льюиса (А) является акцептором электронной пары основания Льюиса (В) и образует с ним ковалентную связь
Согласно электронной теории, предложенной в 1923 году американским физикохимиком Г. Льюисом, основание — это вещество, способное отдавать электронную пару на образование связи с кислотой Льюиса. Основаниями Льюиса могут быть амины R3N, спирты ROH, простые эфиры ROR, тиолы RSH, тиоэфиры RSR, анионы, соединения с π–связями. В зависимости от орбитали, на которой расположена участвующая в реакции пара электронов, основания Льюиса подразделяют на n-, σ– и π–типы — электронные пары для этих типов расположены соответственно на несвязывающих, σ– и π-орбиталях.
Понятия основания в теориях Льюиса и Брёнстеда — Лоури совпадают: согласно обеим теориям основания отдают пару электронов на образование связи. Разница заключается лишь в том, куда расходуется эта электронная пара. Основания Брёнстеда за её счёт образуют связь с протоном, а основания Льюиса — с любыми частицами, имеющими вакантную орбиталь. Таким образом, существенные различия этих теорий касаются понятия кислоты, а не основания.
Теория Льюиса не предусматривает количественной оценки способности оснований реагировать с кислотами Льюиса. Однако, для качественной оценки широко применяется принцип жёстких и мягких кислот и оснований Пирсона (принцип ЖМКО), согласно которому жёсткие кислоты предпочтительно реагируют с жёсткими основаниями, а мягкие кислоты — с мягкими основаниями. По Пирсону, жёсткими основаниями являются основания, донорный центр которых обладает низкой поляризуемостью и высокой электроотрицательностью. Напротив, мягкими основаниями являются донорные частицы с высокой поляризуемостью и низкой электроотрицательностью. Жёсткие и мягкие кислоты обладают такими же свойствами как жёсткие и мягкие основания соответственно с той разницей, что они являются акцепторными частицами.
Классификация оснований и кислот в рамках принципа ЖМКОЖёсткие основания Промежуточные основания Мягкие основания
OH-, RO-, F-, Cl-, RCOO-, NO3-, NH3, RNH2, H2O, ROH, SO42-, CO32-, R2O, NR2-, NH2- Br-, C6H5NH2, NO2-, C5H5N RS-, RSH, I-, H-, R3C-, алкены, C6H6, R3P, (RO)3P
Жёсткие кислоты Промежуточные кислоты Мягкие кислоты
H+, Li+, Na+, K+, Mg2+, Ca2+, Al3+, Cr3+, Fe3+, BF3, B(OR)3, AlR3, AlCl3, SO3, BF3, RCO+, CO2, RSO2+, Cu2+, Fe2+, Zn2+, SO2, R3C+, C6H5+, NO+ Ag+, Cu+, Hg2+, RS+, I+, Br+, Pb2+, BH3, карбены
Критерий ЖКМО не имеет количественных параметров, однако основания Льюиса можно приблизительно расположить в ряды по их льюисовской основности. Например, мягкость оснований убывает в следующих рядах:
В общей теории кислот и оснований, созданной М. И. Усановичем в 1939 году, основание определено как вещество, отдающее анионы (или электроны) и принимающие катионы. Таким образом, в рамках теории Усановича в понятие основания входят как основания Брёнстеда, так и основания Льюиса, а также восстановители. Кроме того, само понятие основности, как и кислотности, в общей теории Усановича рассматривается как функция вещества, проявление которой зависит не от самого вещества, а от его партнёра по реакции.
Сила оснований
Теория Брёнстеда — Лоури позволяет количественно оценить силу оснований, то есть их способность отщеплять протон от кислот. Это принято делать при помощи константы основности Kb — константы равновесия реакции основания с кислотой сравнения, в качестве которой выбрана вода. Чем выше константа основности, тем выше сила основания и тем больше его способность отщеплять протон. Часто константу основности выражают в виде показателя константы основности pKb. Например, для аммиака как основания Брёнстеда можно записать:
Для многоосновных оснований используют несколько значений констант диссоциации Kb1, Kb2 и т. д. Например, фосфат-ион может протонироваться трижды:
Силу основания можно также охарактеризовать константой кислотности его сопряжённой кислоты Ka (BH+), причём произведение константы основности Kb на константу Ka (BH+) равно ионному произведению воды для водных растворов и константе автопротолиза растворителя в общем случае.
Из последнего уравнения также следует, что сила основания тем выше, чем ниже кислотность сопряжённой ему кислоты. Например, вода является слабой кислотой и при отщеплении протона превращается в сильное основание — гидроксид-ион OH-.
Значения pKb некоторых оснований и pKa их сопряжённых кислот в разбавленных водных растворах.
На кислотно-основное равновесие значительное влияние оказывает растворитель. В частности, для водных растворов было обнаружено, что все основания с константами основности pKb < 0 имеют одинаковые свойства (например, pH растворов). Объясняется это тем, что такие основания в воде практически нацело превращаются в гидроксид-ион OH–, который является единственным основанием в растворе. Так, все основания с pKb < 0 (амид натрия NaNH2, гидрид натрия NaH и др.) дают эквивалентное количество гидроксид-ионов в водных растворах, выравниваясь между собой по силе. Данное явление получило название нивелирующего эффекта растворителя. Аналогичным образом, в водных растворах выравниваются по силе и очень слабые основания с pKb > 14.
Основания с pKb от 0 до 14 в воде частично протонированы и находятся в равновесии с сопряжённой кислотой, а их свойства в растворе зависят от значения pKb. В этом случае говорят о дифференцирующем эффекте растворителя. Интервал pKb, в котором основания дифференцированы по силе, равен показателю константы автопротолиза растворителя. Для разных растворителей этот интервал различен (14 для воды, 19 для этанола, 33 для аммиака и т. д.), соответственно, и набор дифференцированных и нивелированных оснований для них разный.
В растворителях, обладающих выраженными кислотными свойствами, все основания становятся более сильными и большее число оснований нивелируется по силе. Например, уксусная кислота уравнивает большинство известных оснований по силе, со своим сопряжённым основанием — ацетат-ионом CH3COO–. Напротив, основные растворители (аммиак) служат дифференцирующими растворителями для оснований.
Существует несколько факторов, которые определяют относительную силу органических и неорганических оснований и которые связаны с их строением. Часто несколько факторов действуют одновременно, поэтому трудно предсказать их суммарное влияние. Среди наиболее значимых можно выделить следующие факторы.
Индуктивный эффект (эффект поля). При повышении доступности электронной пары основания его сила возрастает. По этой причине введение электронодонорных заместителей в основание способствует проявлению им основных свойств. Например, введение алкильных заместителей в молекулу аммиака приводит к более сильным основаниям, чем сам аммиак. Напротив, введение акцепторных заместителей в молекулу понижает силу основания.
Константы основности pKb для аммиака и простейших аминовАммиак
NH3 Метиламин
CH3NH2 Этиламин
C2H5NH2 Диметиламин
(CH3)2NH Диэтиламин
(C2H5)2NH Триметиламин
(CH3)3N Триэтиламин
(C2H5)3N
Мезомерный эффект (резонансный эффект). Электронодонорные и электроноакцепторные заместители оказывают положительное и отрицательное влияние на силу основания соответственно также через систему сопряжения. В таком случае говорят о мезомерном эффекте. Данный эффект приводит к тем же последствиям, что и индуктивный: различается лишь механизм их действия. Так, пара-нитроанилин является более слабым основанием, чем анилин (pKb равны 12,89 и 9,40 соответственно) из-за акцепторного влияния нитрогруппы, которая снижает доступность электронной пары азота аминогруппы.
Эффект сопряжения проявляется также в том случае, если электронная пара основания находится в системе сопряжения, например, с ароматической системой или двойной связью. В таком случае основания имеют более низкую силу. Например, амиды и анилины являются гораздо более слабыми основаниями, чем амины.
Корреляция с расположением атомов в периодической системе. Чем выше электроотрицательность основного элемента, тем ниже основная сила основания. Так, сила основания понижается при движении по периоду периодической системы слева направо. Также основность понижается при переходе по группе сверху вниз, что связано с увеличением радиуса основного атома и, следовательно, меньшей плотностью отрицательного заряда на нём, что в итоге снижает силу связывания положительно заряженного протона.
Гибридизация. Сила органических оснований понижается, если основный атом связан с другим атомом кратными связями. Так, при переходе от аминов к иминам и нитрилам основность уменьшается. Это объясняется тем, что электронная пара в этих соединениях располагается на sp3-, sp2- и sp-гибридных орбиталях атома азота соответственно, то есть в данном ряду электронная пара приближается по характеру к s-электронам, приближаясь к атомному ядру и становясь менее доступной.
Со́ли — это сложные вещества, которые в водных растворах диссоциируют на катионы металлов и анионы кислотных остатков. ИЮПАК определяет соли как химические соединения, состоящие из катионов и анионов. Есть ещё одно определение: солями называют вещества, которые могут быть получены при взаимодействии кислот и оснований с выделением воды.
Кроме катионов металлов в солях могут находиться катионы аммония NH4+, фосфония PH4+ и их органические производные, а также комплексные катионы и т. д. Анионами в солях выступают анионы кислотного остатка различных кислот Брёнстеда — как неорганических, так и органических, включая карбанионы и комплексные анионы.
М. В. Ломоносов в своих Трудах по химии и физике так описывал понятие «соль»:
Типы солей
Если рассматривать соли как продукты протонов в кислотах или гидроксогрупп в основаниях, то можно выделить следующие типы солей:
Средние (нормальные) соли — продукты замещения всех катионов водорода в молекулах кислоты на катионы металла (Na2CO3, K3PO4).
Кислые соли — продукты частичного замещения катионов водорода в кислотах на катионы металла (NaHCO3, K2HPO4). Они образуются при нейтрализации основания избытком кислоты (то есть в условиях недостатка основания или избытка кислоты).
Осно́вные соли — продукты неполного замещения гидроксогрупп основания (OH-) кислотными остатками ((CuOH)2CO3). Они образуются в условиях избытка основания или недостатка кислоты.
По числу присутствующих в структуре катионов и анионов выделяют следующие типы солей:
Простые соли — соли, состоящие из одного вида катионов и одного вида анионов (NaCl)
Двойные соли — соли, содержащие два различных катиона (KAl(SO4)2·12 H2O).
Смешанные соли — соли, в составе которых присутствует два различных аниона (Ca(OCl)Cl).
Также различают гидратные соли (кристаллогидраты), в состав которых входят молекулы кристаллизационной воды, например, Na2SO4·10 H2O, и комплексные соли, содержащие комплексный катион или комплексный анион (K4[Fe(CN)6], [Cu(NH3)4](OH)2. Внутренние соли образованы биполярными ионами, то есть молекулами, содержащими как положительно заряженный, так и отрицательно заряженный атом.
Номенклатура солей
Названия солей, как правило, связаны с названиями соответствующих кислот. Поскольку многие кислоты в русском языке носят тривиальные, или традиционные, названия, подобные названия (нитраты, фосфаты, карбонаты и др.) также сохраняются и для солей.
Традиционные названия солей состоят из названий анионов в именительном падеже и названий катионов в родительном падеже. Названия анионов строятся на основе русских или латинских названий кислотообразующих элементов. Если кислотообразующий элемент может иметь одну степень окисления, то к его названию добавляют суффикс -ат:
CO32- — карбонат,
GeO32- — германат.
Если кислотообразующий элемент может принимать две степени окисления, то для аниона, образованного этим элементом в более высокой степени окисления, применяют суффикс -ат, а для аниона с элементов в меньшей степени окисления — суффикс -ит:
SO42- — сульфат,
SO32- — сульфит.
Если элемент может принимать три степени окисления, то для высшей, средней и низшей степени окисления используют соответственно суффиксы -ат, -ит и суффикс -ит с приставкой гипо-:
NO3- — нитрат,
NO2- — нитрит,
NO22- — гипонитрит.
Наконец, в случае элементов, принимающих четыре степени окисления, для высшей степени окисления применяют приставку пер- и суффикс -ат, далее (в порядке понижения степени окисления) суффикс -ат, суффикс -ит и суффикс -ит с приставкой гипо-:
ClO4- — перхлорат,
ClO3- — хлорат,
ClO2- — хлорит,
ClO– — гипохлорит.
Приставки мета-, орто-, поли-, ди-, три-, пероксо- и т. п., традиционно присутствующие в названиях кислот, сохраняются также и в названиях анионов.
Названия катионов соответствуют названиям элементов, от которых они образованы: при необходимости указывается число атомов в катионе (катион диртути(2+) Hg22+, катион тетрамышьяка(2+) As42+) и степень окисления атома, если она переменная.
Названия кислых солей образуются путём добавления приставки гидро- к названию аниона. Если на один анион приходится больше одного атома водорода, то его количество указывают при помощи умножающей приставки (NaHCO3 — гидрокарбонат натрия, NaH2PO4 — дигидрофосфат натрия). Аналогично, для образования названий основных солей используются приставки гидроксо- ((FeOH)NO3 — гидроксонитрат железа(II)).
Кристаллогидратам дают названия, добавляя слово гидрат к традиционному или систематическому названию соли (Pb(BrO3)2·H2O — гидрат бромата свинца(II), Na2CO3·10 H2O — декагидрат карбоната натрия). Если известна структура кристаллогидрата, то может применяться номенклатура комплексных соединений ([Be(H2O)4]SO4 — сульфат тетрааквабериллия(II)).
Для некоторых классов солей существуют групповые названия, например, квасцы — для двойных сульфатов общего вида MIMIII(SO4)2·12 H2O, где MI — катионы натрия, калия, рубидия, цезия, таллия или аммония, а MIII — катионы алюминия, галлия, индия, таллия, титана, ванадия, хрома, марганца, железа, кобальта, родия или иридия.
Для более сложных или редких солей применяются систематические названия, образующиеся по правилам номенклатуры комплексных соединений. Согласно данной номенклатуре, соль подразделяется на внешнюю и внутреннюю сферы (катион и анион): последняя состоит из центрального атома и лигандов — атомов, связанных с центральным атомом. Название соли формируют следующим образом. Вначале записывают название внутренней сферы (аниона) в именительном падеже, состоящее из названий лигандов (приставок) и центрального элемента (корня) с суффиксом -ат и указанием его степени окисления. Затем к названию добавляют названия атомов внешней сферы (катионов) в родительном падеже.
LiBO3 — триоксоборат(III) лития
Na2Cr2O7 — гептаоксодихромат(VI) натрия
NaHSO4 — тетраоксосульфат(VI) водорода-натрия
Номенклатура солей бескислородных кислот
Для образования названий солей бескислородных кислот пользуются общими правилами составления названий бинарных соединений: применяются либо универсальные номенклатурные правила с указанием числовых приставок, либо способ Штока с указанием степени окисления, причём второй способ является предпочтительным.
Названия галогенидов составляются из названия галогена с суффиксом -ид и катиона (NaBr — бромид натрия, SF6 — фторид серы(VI), или гексафторид серы, Nb6I11 — ундекаиодид гексаниобия). Кроме того, существует класс псевдогалогенидов — солей, которые содержат анионы с галогенидоподобными свойствами. Их названия образуются подобным образом (Fe(CN)2 — цианид железа(II), AgNCS — тиоцианат серебра(I)).
Халькогениды, содержащие в качестве аниона серу, селен и теллур, называют сульфидами, селенидами и теллуридами. Сероводород и селеноводород могут образовывать кислые соли, которые называют гидросульфидами и гидроселенидами соответственно (ZnS — сульфид цинка, SiS2 — дисульфид кремния, NaHS — гидросульфид натрия). Двойные сульфиды называют, указывая два катиона через дефис: (FeCu)S2 — дисульфид железа-меди.
Физические свойства и строение солей
Как правило, соли представляют собой кристаллические вещества с ионной кристаллической решёткой. Например, кристаллы галогенидов щелочных и щёлочноземельных металлов (NaCl, CsCl, CaF2) построены из анионов, расположенных по принципу плотнейшей шаровой упаковки, и катионов, занимающих пустоты в этой упаковке. Ионные кристаллы солей могут быть построены также из кислотных остатков, объединённых в бесконечные анионные фрагменты и трёхмерные каркасы с катионами в полостях (силикаты). Подобное строение соответствующим образом отражается на их физических свойствах: они имеют высокие температуры плавления, в твёрдом состоянии являются диэлектриками.
Известны также соли молекулярного (ковалентного) строения (например, хлорид алюминия AlCl3). У многих солей характер химических связей является промежуточным между ионным и ковалентным.
Особый интерес представляют ионные жидкости — соли с температурой плавления ниже 100 °С. Кроме аномальной температуры плавления ионные жидкости имеют практически нулевое давление насыщенного пара и высокую вязкость. Особые свойства этих солей объясняются низкой симметрией катиона, слабым взаимодействием между ионами и хорошим распределением заряда катиона.
Важным свойством солей является их растворимость в воде. По данному критерию выделяют растворимые, мало растворимые и нерастворимые соли.
Кристаллогидраты обычно получают при кристаллизации соли из водных растворов, однако известны также кристаллосольваты солей, выпадающие из неводных растворителей (например, CaBr2·3 C2H5OH).
Химические свойства
Химические свойства определяются свойствами катионов и анионов, входящих в их состав.
Соли взаимодействуют с кислотами и основаниями, если в результате реакции получается продукт, который выходит из сферы реакции (осадок, газ, малодиссоциирующие вещества, например, вода):
Соли взаимодействуют с металлами, если свободный металл находится левее металла в составе соли в электрохимическом ряду активности металлов:
Соли взаимодействуют между собой, если продукт реакции выходит из сферы реакции (образуется газ, осадок или вода); в том числе эти реакции могут проходить с изменением степеней окисления атомов реагентов:
При растворении в воде соли полностью или частично диссоциируют на ионы. Если диссоциация происходит нацело, то соли являются сильными электролитами, иначе — слабыми. Примером типичных сильных электролитов могут служить соли щелочных металлов, которые в растворе существуют в виде сольватированных ионов. Несмотря на то, что широко распространена теория, утверждающая, что соли в водном растворе диссоциируют полностью, в реальности для большинства солей наблюдается частичная диссоциация, например,
Гидролиз солей
Некоторые соли в водном растворе способны подвергаться гидролизу. Данная реакция протекает обратимо для солей слабых кислот (Na2CO3) или слабых оснований (CuCl2), и необратимо — для солей слабых кислот и слабых оснований (Al2S3).
Применение солей
Соли повсеместно используются как в производстве, так и в повседневной жизни.
Соли соляной кислоты. Из хлоридов больше всего используют хлорид натрия и хлорид калия.
Хлорид натрия (поваренную соль) выделяют из озерной и морской воды, а также добывают в соляных шахтах. Поваренную соль используют в пищу. В промышленности хлорид натрия служит сырьём для получения хлора, гидроксида натрия и соды.
Хлорид калия используют в сельском хозяйстве как калийное удобрение.
Соли серной кислоты. В строительстве и в медицине широко используют полуводный гипс, получаемый при обжиге горной породы (дигидрат сульфата кальция). Будучи смешан с водой, он быстро застывает, образуя дигидрат сульфата кальция, то есть гипс.
Декагидрат сульфата натрия используют в качестве сырья для получения соды.
Соли азотной кислоты. Нитраты больше всего используют в качестве удобрений в сельском хозяйстве. Важнейшим из них является нитрат натрия, нитрат калия, нитрат кальция и нитрат аммония. Обычно эти соли называют селитрами.
Из ортофосфатов важнейшим является ортофосфат кальция. Эта соль служит основной составной частью минералов — фосфоритов и апатитов. Фосфориты и апатиты используются в качестве сырья в производстве фосфорных удобрений, например, суперфосфата и преципитата.
Соли угольной кислоты. Карбонат кальция используют в качестве сырья для получения извести.
Карбонат натрия (соду) применяют в производстве стекла и при варке мыла.
Карбонат кальция в природе встречается и в виде известняка, мела и мрамора.
СОЛИ, класс хим. соединений. Общепринятого определения понятия “соли”, так же как и терминов “кислоты и основания”, продуктами взаимод. к-рых соли являются, в настоящее время не существует. Соли могут рассматриваться как продукты замещения протонов водорода к-ты на ионы металлов,, и др. катионы или групп ОН основания на анионы к-т (напр., Сl-,). Продуктами полного замещения являются средние соли, напр. Na2SO4, MgCl2, неполного – кислые или основные соли, напр. KHSO4, CuClOH. Различают также простые соли, включающие один вид катионов и один вид анионов (напр., NaCl), двойные соли, содержащие два вида катионов [напр., KAl(SO4)2·12H2O], смешанные соли, в составе к-рых два вида кислотных остатков (напр., AgClBr). Комплексные соли (см. Координационные соединения)содержат комплексные ионы, напр. K4[Fe(CN)6]. Т. наз. внутренние соли, напр. бетаин (CH3)3NCH2COO-, представляют собой биполярные ионы.
Типичные соли -кристаллич. в-ва с ионной структурой, напр. CsF (см. Ионная связь, Ионные кристаллы). Существуют также ковалентные соли, напр. А1Сl3 (см. Ковалентные кристаллы). В действительности характер хим. связи у многих солей – смешанный. О правилах образования названий солей см. Номенклатура химическая.
По р-римости в воде различают растворимые, мало растворимые и практически нерастворимые соли. К р-римым относятся почти все соли натрия, калия и аммония, мн. нитраты, ацетаты и хлориды, за исключением солей поливалентных металлов, гидролизующихся в воде, мн. кислые соли.
В водных р-рах соли полностью или частично диссоциируют на ионы (см. Электролитическая диссоциация). Соли слабых к-т и(или) слабых оснований подвергаются при этом гидролизу. Водные р-ры солей содержат гидратир. ионы (см. Гидратация), ионные пары и более сложные хим. формы, включающие продукты гидролиза и др. Ряд солей раств. также в спиртах, ацетоне, амидах к-т и др. орг. р-рителях.
Из водных р-ров соли могут кристаллизоваться в виде кристаллогидратов (см. Гидраты), из неводных-в виде кристаллосольватов, напр. СаВr2·3С2Н5ОН (см. Сольваты). Р-ры солей взаимод. с металлами, стандартные электродные потенциалы к-рых более отрицательны, чем потенциал металла, входящего в состав соли:
Zn + Hg(NO3)2(p_p) : Zn(NO3)2(p–p) + Hg
Из хорошо р-римых солей слабых к-т более сильные к-ты вытесняют более слабые:
CH3COONa + HCl(p-p) : CH3COOH + NaCl
Из хорошо р-римых солей слабых оснований более сильные р-римые основания вытесняют более слабые:
АlСl3(р_р) + 3NаОН(p-р) : А1(ОН)3 + 3NaCl(p–p)
В водно-солевых системах между солями могут протекать обменные р-ции, процессы образования труднорастворимых или комплексных солей:
Данные о разл. процессах, протекающих в водно-солевых системах, о р-римости солей при их совместном присутствии в зависимости от т-ры, давления и концентрации, о составе твердых и жидких фаз м. б. получены при изучении диаграмм р-римости водно-солевых систем (рис. 1, 2; см. также Растворы, Физико-химический анализ).
Общие способы синтеза солей. Взаимод. к-т и оснований (р-ция нейтрализации, ур-ние 1), а также к-т с основными оксидами (2) и оснований с кислотными оксидами (3) или кислотных и основных оксидов (4):
Следует отметить, что продукты взаимод. оснований и к-т Льюиса (см. Кислоты и основания) отличаются от обычных солей и по отношению к ним применяют назв. “кислотно-основной комплекс” или “аддукт”. Обменное взаимод. между к-той и солью или основанием и солью (5,6):
Взаимод. двух разл. солей (7), металлов с к-тами (8), металлов с неметаллами (9), металлов с солями (10):
Сырьем для пром. получения ряда солей-хлоридов, сульфатов, карбонатов, боратов Na, К, Са, Mg служат морская и океанич. вода, прир. рассолы, образующиеся при ее испарении, и твердые залежи солей (см. Галургия). Для группы минералов, образующих осадочные солевые месторождения (сульфатов и хлоридов Na, К и Mg), применяют условное назв. “природные соли”. Наиб. крупные месторождения калиевых солей находятся в России (Соликамск), Канаде и ФРГ, мощные залежи фосфатных руд-в Северной Африке, России и Казахстане, NaNO3-B Чили.
Соли используют в пищ., хим., металлургич., стекольной, кожевенной, текстильной пром-сти, в с. х-ве, медицине и т. д.
См. также Бораты неорганические, Галогениды, Карбонаты неорганические, Нитраты неорганические, Сульфаты неорганические, Фосфаты неорганические и др.
Солями называются вещества, в которых атомы металла связаны с кислотными остатками.
Исключением являются соли аммония, в которых с кислотными остатками связаны не атомы металла, а частицы NH4+. Примеры типичных солей приведены ниже.
NaCl – хлорид натрия,
Na2SO4 – сульфат натрия,
СаSO4 – сульфат кальция,
СаCl2 – хлорид кальция,
(NH4)2SO4 – сульфат аммония.
Формула соли строится с учетом валентностей металла и кислотного остатка. Практически все соли – ионные соединения, поэтому можно говорить, что в солях связаны между собой ионы металла и ионы кислотных остатков:
Na+Cl– – хлорид натрия
Ca2+SO42– – сульфат кальция и т.д.
Названия солей составляются из названия кислотного остатка и названия металла. Главным в названии является кислотный остаток. Названия солей в зависимости от кислотного остатка показаны в таблице 8-6.
Из таблицы 8-6 видно, что названия кислородсодержащих солей имеют окончания “ат”, а названия бескислородных солей – окончания “ид”.
В некоторых случаях для кислородсодержащих солей может использоваться окончание “ит”. Например, Na2SO3 – сульфит натрия. Это делается для того, чтобы различать соли серной кислоты (H2SO4) и сернистой кислоты (H2SO3) и в других таких же случаях.
** Все соли разделяются на средние, кислые и основные. Средние соли содержат только атомы металла и кислотного остатка. Например, все соли из таблицы 8-6 являются средними солями.
Любую соль можно получить соответствующей реакцией нейтрализации. Например, сульфит натрия образуется в реакции между сернистой кислотой и основанием (едким натром). При этом на 1 моль кислоты требуется взять 2 моля основания:
Если взять только 1 моль основания – то есть меньше, чем требуется для полной нейтрализации, то образуется кислая соль – гидросульфит натрия:
Кислые соли образуются многоосновными кислотами. Одноосновные кислоты кислых солей не образуют.
Кислые соли, помимо ионов металла и кислотного остатка, содержат ионы водорода.
Названия кислых солей содержат приставку “гидро” (от слова hydrogenium – водород). Например:
NaHCO3 – гидрокарбонат натрия,
K2HPO4 – гидрофосфат калия,
KH2PO4 – дигидрофосфат калия.
Основные соли образуются при неполной нейтрализации основания. Названия основных солей образуют с помощью приставки “гидроксо”. Ниже приведен пример, показывающий отличие основных солей от обычных (средних):
Mg(OH)2 + 2 HCl = MgCl2 + 2 H2O
хлорид магния (средняя соль)
Mg(OH)2 + HCl = Mg(OH)Cl + H2O
гидроксохлорид магния (основная соль)
Основные соли, помимо ионов металла и кислотного остатка, содержат гидроксильные группы.
Основные соли образуются только из многокислотных оснований. Одноокислотные основания таких солей образовать не могут.
В таблице 8-6 приведены международные названия солей. Однако полезно знать также русские названия и некоторые исторически сложившиеся, традиционные названия солей, имеющих важное значение (таблица 8-7).
Например, ни в коем случае нельзя путать соду Na2CO3 и питьевую соду NaHCO3. Если нечаянно использовать в пищу соду вместо питьевой соды, можно получить тяжелый химический ожог.
В химии и в технике до сих пор сохраняется много старинных названий. Например, каустическая сода – вовсе не соль, а техническое название гидроксида натрия NaOH. Если обыкновенной содой можно почистить раковину или посуду, то каустическую соду ни при каких обстоятельствах брать в руки или использовать в быту нельзя!
Эти простые знания могут пригодиться в жизни – мало ли с какими веществами придется столкнуться в будущем.
** Строение солей аналогично строению соответствующих кислот и оснований. Ниже приведены структурные формулы типичных средних, кислых и основных солей.
В заключение приведем строение и название основной соли, формула которой, на первый взгляд, выглядит очень сложной: [Fe(OH)2]2CO3 – дигидроксокарбонат железа (III).
На самом деле, при рассмотрении структурной формулы такой соли становится ясно, что эта соль – продукт частичной нейтрализации гидроксида железа (III) угольной кислотой.
Атомно – молекулярное учение.
1. Все вещества состоят из молекул. Молекула – наименьшая частица вещества, обладающая его химическими свойствами.
2. Молекулы состоят из атомов. Атом – наименьшая частица химического элемента, сохраняющая все его химические свойства. Различным элементам соответствуют различные атомы.
3. Молекулы и атомы находятся в непрерывном движении; между ними существуют силы притяжения и отталкивания.
Химический элемент – это вид атомов, характеризующийся определенными зарядами ядер и строением электронных оболочек. В настоящее время известно 110 элементов: 89 из них найдены в природе (на Земле), остальные получены искусственным путем. Атомы существуют в свободном состоянии, в соединениях с атомами того же или других элементов, образуя молекулы. Способность атомов вступать во взаимодействие с другими атомами и образовывать химические соединения определяется его строением. Атомы состоят из положительно заряженного ядра и отрицательно заряженных электронов, движущихся вокруг него, образуя электронейтральную систему, которая подчиняется законам, характерным для микросистем.
Атомное ядро – центральная часть атома, состоящая из Z протонов и N нейтронов, в которой сосредоточена основная масса атомов.
Заряд ядра – положительный, по величине равен количеству протонов в ядре или электронов в нейтральном атоме и совпадает с порядковым номером элемента в периодической системе. Сумма протонов и нейтронов атомного ядра называется массовым числом A = Z + N.
Изотопы – химические элементы с одинаковыми зарядами ядер, но различными массовыми числами за счет разного числа нейтронов в ядре.
Химическая формула – это условная запись состава вещества с помощью химических знаков (предложены в
Аллотропия – явление образования химическим элементом нескольких простых веществ, различающихся по строению и свойствам. Простые вещества- молекулы, состоят из атомов одного и того же элемента.
Cложные вещества – молекулы, состоят из атомов различных химических элементов.
Международная единица атомных масс равна 1/12 массы изотопа
1 а.е.м = 1/12 • m (
Относительная атомная масса (Ar) – безразмерная величина, равная отношению средней массы атома элемента (с учетом процентного содержания изотопов в природе) к 1/12 массы атома
Средняя абсолютная масса атома (m) равна относительной атомной массе, умноженной на а.е.м.
Ar(Mg) = 24,312
m (Mg) = 24,312 • 1,66057 • 10-24 = 4,037 • 10-
Относительная молекулярная масса (Mr) – безразмерная величина, показывающая, во сколько раз масса молекулы данного вещества больше 1/12 массы атома углерода
Mг = mг / (1/12 mа(
mr – масса молекулы данного вещества;
mа(
Mг =
Примеры.
Mг(B2O3) = 2 • Ar(B) + 3 • Ar(O) = 2 • 11 + 3 • 16 = 70
Mг(KAl(SO4)2) = 1 • Ar(K) + 1 • Ar(Al) + 1 • 2 • Ar(S) + 2 • 4 • Ar(O) =
= 1 • 39 + 1 • 27 + 1 • 2 • 32 + 2 • 4 • 16 = 258
Абсолютная масса молекулы равна относительной молекулярной массе, умноженной на а.е.м. Число атомов и молекул в обычных образцах веществ очень велико, поэтому при характеристике количества вещества используют специальную единицу измерения – моль.
Количество вещества, моль. Означает определенное число структурных элементов (молекул, атомов, ионов). Обозначается n, измеряется в моль. Моль – количество вещества, содержащее столько же частиц, сколько содержится атомов в
Число Авогадро ди Кваренья (NA). Количество частиц в 1 моль любого вещества одно и то же и равно 6,02 • 1023. (Постоянная Авогадро имеет размерность – моль-1).
Пример.
Сколько молекул содержится в
Молекулярная масса серы равна
n(s) = m(s) / M(s) = 6,4г / 32 г/моль = 0,2 моль
Определим число структурных единиц (молекул), используя постоянную Авогадро NA
N(s) = n(s) • NA = 0,2 • 6,02 • 1023 = 1,2 • 1023
Молярная масса показывает массу 1 моля вещества (обозначается M).
M = m / n
Молярная масса вещества равна отношению массы вещества к соответствующему количеству вещества.
Молярная масса вещества численно равна его относительной молекулярной массе, однако первая величина имеет размерность г/моль, а вторая – безразмерная.
M = NA • m(1 молекула) = NA • Mг • 1 а.е.м. = (NA • 1 а.е.м.) • Mг = Mг
Это означает, что если масса некоторой молекулы равна, например, 80 а.е.м. (SO3), то масса одного моля молекул равна
Закон сохранения массы веществ
(М.В.Ломоносов,
Масса всех веществ, вступивших в химическую реакцию, равна массе всех продуктов реакции.
Атомно-молекулярное учение этот закон объясняет следующим образом: в результате химических реакций атомы не исчезают и не возникают, а происходит их перегруппировка (т.е. химическое превращение- это процесс разрыва одних связей между атомами и образование других, в результате чего из молекул исходных веществ получаются молекулы продуктов реакции). Поскольку число атомов до и после реакции остается неизменным, то их общая масса также изменяться не должна. Под массой понимали величину, характеризующую количество материи.
В начале 20 века формулировка закона сохранения массы подверглась пересмотру в связи с появлением теории относительности (А.Эйнштейн,
Исходя из закона сохранения массы, можно составлять уравнения химических реакций и по ним производить расчеты. Он является основой количественного химического анализа.
Составление химических уравнений
Включает три этапа:
1. Запись формул веществ, вступивших в реакцию (слева) и продуктов реакции (справа), соединив их по смыслу знаками “+” и “” :
HgO = Hg + O2
2. Подбор коэффициентов для каждого вещества так, чтобы количество атомов каждого элемента в левой и правой части уравнения было одинаково:
2HgO = 2Hg + O2
3. Проверка числа атомов каждого элемента в левой и правой частях уравнения.
Расчеты по химическим уравнениям
Расчеты по химическим уравнениям (стехиометрические расчеты) основаны на законе сохранения массы веществ. В реальных химических процессах из-за неполного протекания реакций и потерь масса продуктов обычно меньше теоретически рассчитаной. Выходом реакции (h) называют отношение реальной массы продукта (mp) к теоретически возможной (mт), выраженное в долях единицы или в процентах.
h= (mp / mт) • 100%
Если в условиях задач выход продуктов реакции не указан, его в расчетах принимают за 100% (количественный выход).
Пример 1
Сколько г меди образуется при восстановлении
Решение
CuO + H2 = Cu + H2O
1. Рассчитаем теоретический выход меди по уравнению реакции:
2. Определим, сколько граммов меди образуется при 82% выходе продукта:
Х г –– 82%
X = (8 • 82) / 100 =
Пример 2
Определите выход реакции получения вольфрама методом алюминотермии, если из
Решение
a) Определим массу (г) WO3 в
w(WO3)= 1,0 – 0,3 = 0,7
m(WO3) = w(WO3) • mруды = 0,7 • 33,14 =
b) Определим теоретический выход вольфрама в результате восстановления
WO3 + 2Al = Al2O3 + W
При восстановлении
X = (23,2 • 187) / 232 =
c) Рассчитаем практический выход вольфрама
Y = (12,72 • 100) / 18,7 = 68%
Пример 3.
Сколько граммов осадка сульфата бария образуется при слиянии растворов, содержащих
Решение.
BaCl2 + Na2SO4 = BaSO4¯ + 2NaCl
Расчет количества продукта реакции ведут по исходному веществу, взятому в недостатке.
1. Предварительно определяют, какое из двух исходных веществ находится в недостатке.
Обозначим количество г Na2SO4 –– X.
X = (20,8 • 132) / 208 =
Мы установили, что на реакцию с
2. Определяем количество граммов выпавшего осадка BaSO4.
Y = (233 • 20,8) / 208 =
Закон постоянства состава
Впервые сформулировал Ж.Пруст (
Все индивидуальные химические вещества имеют постоянный качественный и количественный состав и определенное химическое строение, независимо от способа получения.
Из закона постоянства состава следует, что при образовании сложного вещества элементы соединяются друг с другом в определенных массовых соотношениях.
Пример.
CuS – сульфид меди. m(Cu) : m(S) = Ar(Cu) : Ar(S) = 64 : 32 = 2 : 1
Чтобы получить сульфид меди (CuS) необходимо смешать порошки меди и серы в массовых отношениях 2 : 1.
Если взятые количества исходных веществ не соответствуют их соотношению в химической формуле соединения, одно из них останется в избытке.
Например, если взять
Массовая доля элемента w(Э) показывает, какую часть составляет масса данного элемента от всей массы вещества: где n – число атомов; Ar(Э) – относительная атомная масса элемента; Mr – относительная молекулярная масса вещества.
w(Э) = (n • Ar(Э)) / Mr
Зная количественный элементный состав соединения можно установить его простейшую молекулярную формулу:
1. Обозначают формулу соединения Ax By Cz
2. Рассчитывают отношение X : Y : Z через массовые доли элементов:
w(A) = (х • Ar(А)) / Mr(AxByCz)
w(B) = (y • Ar(B)) / Mr(AxByCz)
w(C) = (z • Ar(C)) / Mr(AxByCz)
X = (w(A) • Mr) / Ar(А)
Y = (w(B) • Mr) / Ar(B)
Z = (w(C) • Mr) / Ar(C)
x : y : z = (w(A) / Ar(А)) : (w(B) / Ar(B)) : (w(C) / Ar(C))
3. Полученные цифры делят на наименьшее для получения целых чисел X, Y, Z.
4. Записывают формулу соединения.
Закон кратных отношений
(Д.Дальтон,
Если два химических элемента дают несколько соединений, то весовые доли одного и того же элемента в этих соединениях, приходящиеся на одну и ту же весовую долю второго элемента, относятся между собой как небольшие целые числа.
N2O N2O3 NO2(N2O4) N2O5
Число атомов кислорода в молекулах этих соединений, приходящиеся на два атома азота, относятся между собой как 1 : 3 : 4 : 5.
Закон объемных отношений
(Гей-Люссак,
“Объемы газов, вступающих в химические реакции, и объемы газов, образующихся в результате реакции, относятся между собой как небольшие целые числа”.
Следствие. Стехиометрические коэффициенты в уравнениях химических реакций для молекул газообразных веществ показывают, в каких объемных отношениях реагируют или получаются газообразные вещества.
Примеры.
a) 2CO + O2 = 2CO2
При окислении двух объемов оксида углерода (II) одним объемом кислорода образуется 2 объема углекислого газа, т.е. объем исходной реакционной смеси уменьшается на 1 объем.
b) При синтезе аммиака из элементов:
n2 + 3h2 = 2nh3
Один объем азота реагирует с тремя объемами водорода; образуется при этом 2 объема аммиака – объем исходной газообразной реакционной массы уменьшится в 2 раза.
Закон Авогадро ди Кваренья
(
В равных объемах различных газов при одинаковых условиях (темпратура, давление и т.д.) содержится одинаковое число молекул.
Закон справедлив только для газообразных веществ.
Следствия.
1. Одно и то же число молекул различных газов при одинаковых условиях занимает одинаковые объемы.
2. При нормальных условиях (
Пример 1.
Какой объем водорода при н.у. выделится при растворении
Решение.
Mg + 2HCl = MgCl2 + H2
При растворении
X = (4,8 • 22,4) / 24 =
Пример 2.
Решение.
Находим массу
1 л––3,17 г хлора
22,4 л–– Х г хлора
X = 3,17 • 22,4 =
Следовательно, молекулярная масса хлора – 71.
Объединенный газовый закон – объединение трех независимых частных газовых законов: Гей-Люссака, Шарля, Бойля-Мариотта, уравнение, которое можно записать так:
P1V1 / T1 = P2V2 / T2
И наоборот, из объединенного газового закона
при P = const (P1 = P2) можно получить
V1 / T1 = V2 / T2
(закон Гей-Люссака);
при Т= const (T1 = T2):
P1V1 = P2V2
(закон Бойля-Мариотта);
при V = const
P1 / T1 = P2 / T2
(закон Шарля).
Уравнение Клайперона-Менделеева
Если записать объединенный газовый закон для любой массы любого газа, то получается уравнение Клайперона-Менделеева:
pV= (m / M) RT
где m – масса газа; M – молекулярная масса; p – давление; V – объем; T – абсолютная температура (°К); R – универсальная газовая постоянная (8,314 Дж/(моль • К) или
Для данной массы конкретного газа отношение m / M постоянно, поэтому из уравнения Клайперона-Менделеева получается объединенный газовый закон.
Пример.
Какой объем займет при температуре
Решение.
Количество моль CO равно:
n(CO) = m(CO) / M(CO) = 84 / 28 = 3 моль
Объем CO при н.у. составляет
3 •
Изобъединенного газового закона Бойля-Мариотта и Гей-Люссака:
(P • V) / T = (P0 • V0) / T2
Следует
V(CO) = (P0 • T • V0) / (P • T0) = (101,3 • (273 + 17) • 67,2) / (250 • 273) =
Относительная плотность газов показывает, во сколько раз 1 моль одного газа тяжелее (или легче) 1 моля другого газа.
DA(B) = r(B) / r(A) = M(B) / M(A)
Средняя молекулярная масса смеси газов равна общей массе смеси, деленной на общее число молей:
Mср = (m1 +…. + mn) / (n1 +…. + nn) = (M1 • V1 + …. Mn • Vn) / (n1 +…. + nn)
Пример1.
Плотность некоторого газообразного вещества по водороду равна 17. Чему равна его плотность по воздуху (Мср.=29).
Решение.
DH2 = Mв-ва / MH2 = Мв-ва / 2
Мв-ва= 2DH2 = 34
Dвозд = Mв-ва / Mвозд. ср = 34 / 29 = 1,17
Пример2.
Определите плотность по воздуху смеси азота, аргона и углекислого газа, если массовые доли компонентов составляли 15, 50 и 35% соответственно.
Решение.
Dсмеси(по воздуху) = Mсмеси / Mвозд. = Мсмеси / 29
Mсмеси = (15 • 28 + 50 • 40 + 35 • 44) / 100 = (420 + 2000 + 1540) / 100 = 39,6
Dсмеси(по воздуху) = Mсмеси / 29 = 39,6 / 29 = 1,37
Стехиометрические законы
Наиболее важное практическое значение имеют следующие законы химии: стехиометрические и газовые.
1.1.1 Количество вещества – моль вещества
Каждый химический элемент отличается от других не только химическим символом (качественная характеристика), но некоторыми количественными параметрами. К ним относятся, прежде всего, атомная масса элемента и заряд его ядра (или порядковый номер элемента). Эти характеристики для каждого атома элемента приведена в Периодической системе элементов Д. И. Менделеева. Однако следует отметить, что приведенные массы атомов являются относительными величинами (так называемыми, атомными единицами массы или а.е.м.). Молекулярная массахимического соединения также легко определима, так как она равна сумме атомных масс составляющих данную молекулу атомов.
Однако количественные расчеты на практике необходимо проводить в привычных единицах массы (граммы, килограммы и т.д.), поэтому основная трудность, с которой сталкиваются при изучении химии – переход от относительных атомных и молекулярных масс химических веществ к единицам массы.
Переход к более привычным единицам массы (в граммах, например) легко осуществим, если использовать для этого одно из основных понятий химии – моль вещества.
Моль вещества – это количество вещества, содержащее 6,02·1023 атомов или молекул этого вещества.
Количественно масса 1 моль вещества – масса вещества в граммах, численно равная его атомной или молекулярной массе.
Пример: молекулярная масса воды H2O равна 18 а.е.м. (атомная масса водорода – 1, кислорода – 16, итого 1+1+16=18). Значит, один моль воды равен по массе 18 граммов, и эта масса воды содержит 6,02·1023 молекул воды.
Аналогично, масса 1 моля серной кислоты H2SO4 равна 98 граммов (1+1+32+16+16+16+16=98), а масса одной молекулы H2SO4 равна: 98г/6,02·1023 = 16,28·10-
Число 6,02·1023 называется числом Авогадро и является важнейшей мировой константой (NA = 6,02·1023 моль-1).
Таким образом, любое химическое соединение характеризуется массой одного моля или мольной (молярной) массой М, выражаемой в г/моль. Значит, М(H2O) = 18 г/моль, а М(H2SO4) = 98 г/моль.
Связь между количеством(в молях) и массой m (в граммах) вещества выражается формулой:m = nM (1.1)
Возникает закономерный вопрос о необходимости введения термина “мольная масса вещества” и его применения, ведь для измерения массы вещества уже имеются величины, входящие в систему СИ: килограмм, грамм, тонна и т.д. Вопрос отпадает, если рассмотреть применение данных величин при анализе химических уравнений.
В общем случае уравнение химической реакции записывают в виде,
где: A, B, C, D – вещества; a, b, c, d – коэффициенты уравнения.
Принято в левой части уравнения записывать исходные (реагирующие) вещества, а в правой части – продукты химической реакции.
В качестве примера рассмотрим простое химическое взаимодействие:
2Н2 + О2 = 2Н2О.
Данная запись показывает, что при взаимодействии двух молекул газообразного водорода Н 2 и одной молекулы газообразного кислорода О2 образуется две молекулы воды.
Учитывая, что М(Н2) = 2 г/моль, М(О2) = 32 г/моль и М(Н2О) = 18 г/моль, и сохраняя соотношения между числом молекул реагирующих веществ и продуктов реакции , имеем следующую картину:
2Н2+О2=2Н2О
2 молекулы +1 молекула= 2 молекулы
200 молекул+100 молекул=200 молекул
2·6,02·1023 молекул+1·6,02·1023 молекул=2·6,02·1023 молекул
2 моль+1 моль=2 моль
2·2 = 4 грамма+1·32 = 32 грамма=2·18 = 36 граммов
Из данного примера видно, что количество моль реагирующих и образующихся в результате химической реакции веществ прямопропорционально коэффициентам в уравнении химической реакции.
Это позволяет проводить количественные расчеты, используя уравнения заданных химических реакций.
Пример: определить массуобразующейся воды при сжигании 16 граммов водорода в избытке кислорода.
Решение.
Используем уже знакомое нам уравнение реакции и расставим в нем требуемые величины.
2Н2+ О2=2Н2О
2 моль——–2 моль
4 грамма——–36 граммов
16 граммов——–Х граммов
Составим пропорцию:
при сгорании 4 граммов Н2 образовалось 36 граммов Н2О
при сгорании 16 граммов Н2 образовалось Х граммов Н2О
или 4 : 36 = 16 : Х.
Отсюда Х = 144 грамма – масса образующейся воды.
Эквивалентная масса (молярная масса эквивалента вещества)
Эквивалентная масса (молярная масса эквивалента вещества) mэкв также является одной из важнейших характеристик вещества. По определению эквивалент вещества – это такое количество химического вещества, которая реагирует с
mэкв(оксида) = Моксида/(число атомов кислорода·2);
mэкв(основания) = Моснования/кислотность основания;
mэкв(кислоты) = Мкислоты/основность кислоты;
mэкв(соли) = Мсоли/(число атомов металла·валентность металла).
Можно отметить, что в большинстве случаев кислотность основания равна числу гидроксильных групп в формуле основания, а основность кислоты равна числу атомов водорода в формуле кислоты.
Например: mэкв(Fe2O3) = М(Fe2O3)/(3·2) = 160/6 = 26,7 г/моль;
mэкв(H2SO4) = M(H2SO4)/2 = 98/2 = 49 г/моль;
mэкв(Ca(OH)2) = M(Ca(OH)2)/2 = 74/2 = 37 г/моль;
mэкв(Al2(SO4)3) = M(Al2(SO4)3) = 342/2 = 171 г/моль;
Эквивалентные массы веществ используют для количественных расчетов при химических взаимодействиях между веществами. Огромным преимуществом при этом является то, что для этого не нужно использовать уравнение химической реакции (которое во многих случаях написать затруднительно), нужно только знать, что данные химические вещества взаимодействуют между собой или вещество является продуктом химической реакции.
Для количественных расчетов используется закон эквивалентов: массы реагирующих и образующихся веществ относятся друг к другу, как их эквивалентные массы.
Математическое выражение закона эквивалентов имеет следующий вид:m1/m2 = mэкв(1)/mэкв(2) (1.2)
где: m 1 и m 2 – массы реагирующих или образующихся веществ,
mэкв(1) и mэкв(2) – эквивалентные массы этих веществ.
Пример: определить массу соды (карбоната натрия) Na2CO3, необходимую для полной нейтрализации
Решение:
Воспользуемся законом эквивалентов
m(Na2CO3)/m(H2SO4) = mэкв(Na2CO3)/mэкв( H2SO4)
Определяем эквивалентные массы веществ, исходя из их химических формул:
m (Na2CO3) = 106 /(2·1) = 53 г/моль;
mэкв(H2SO4) = 98/2·1 = 49 г/моль.
Тогда:
Х / 1,96кг = 53 г/моль / 49 г/моль
Х =
Газовые законы химии
Закон Авогадро и следствие из него
Среди веществ с различным агрегатным состоянием необходимо выделить газы, которые играют огромную роль не только в нашей жизни, но в различных технологических процессах. Необходимо помнить, что для количественной характеристики любого газа используют давление, температуру и занимаемый объем. Наиболее часто применяют так называемые нормальные условия (н.у.), которые соответствуют давлению Р=105 Па и температуре Т=273 К.
Согласно закону Авогадро: одинаковые объемы различных газов при одинаковых условиях (давлении и температуре) содержат одинаковое число молекул.
Большое практическое значение имеет следствие из закона Авогадро: при нормальных условиях (н.у.) один моль любого газа занимает объем, равный
Объем
Пример: углекислый газ CO2. Имеем М(CO2) = 44 г/моль. Значит, один моль CO2 имеет массу
Нетрудно показать, что связь между массой m и объемом V конкретного газа при н.у. определяется формулой:
Если условия, в которых находится газ отличается от нормальных, то используют уравнение Менделеева-Клапейрона, которое связывает все основные параметры идеального газа:
где: P – давление газа, Па;
V – объем газа, м3;
m – масса газа, г;
M – мольная масса газа, г/моль;
R – универсальная газовая постоянная, R = 8,31 Дж/(моль·К);
T – температура газа, К.
Закон Дальтона
Если мы вернемся к уравнению химической реакции, рассматриваемой в разделе 1.1.1, то, с учетом молярных объемов газов, его можно представить в следующем виде
2Н2+О2=2Н2О(газ)
2 молекулы+1 молекула=2 молекулы
200 молекул+100 молекул=200 молекул
Из приведенного примера видно, что массы газов заменены на мольные объемы. Отсюда следует формулировка закона Дальтона: объемы реагирующих газов и продуктов их реакций относятся друг к другу как небольшие целые числа (коэффициенты уравнения реакции).
Закон парциальных давлений
На практике часто приходится встречаться со смесью различных газов (например, воздух), В этом случае необходимо применять вышерассмотренные газовые законы для каждого газа в отдельности и затем суммировать полученные величины. При этом пользуются также законом парциальных давлений: общее давление газовой смеси равно сумме парциальных давлений отдельных газов, составляющих данную смесь, то естьРобщ = Р1 + Р2 + .. + Рп Из формулировки закона следует, что парциальное давление представляет собой частичное давление, создаваемое отдельным газом. И действительно, парциальное давление – это такое давление, которое бы создавал данный газ, если бы он один занимал весь объем.
Пример: определить давление газовой смеси, если в объеме
Решение
Определим с помощью уравнения Менделеева-Клапейрона парциальные давления каждого из газов, составляющих данную газовую смесь:
Р(Н2) = (m/M)RT/V = (4г/2г/моль)·8,31·273К/0,0112мз = 4·105 Па,
Р(СО) = (14г/28г/моль)·8,31·273К/0,0112мз = 105 Па,
Р(N2) = (56г/28г/моль)·8,31·273К/0,0112мз = 4·105 Па.
Общее давление газовой смеси равно:
Робщ = Р(Н2) + Р(СО) + Р(N2) = 9·105 Па
Величина парциального давления определяется несколькими способами, но наиболее часто встречающийся практически способ основан на использовании формулы, где А – содержание данного газа в газовой смеси в объемных %.
Пример: определить массу кислорода О2, содержащегося в 1 мз воздуха при нормальных условиях, если процентное содержание кислорода в воздухе составляет 21об.%
Решение
Парциальное давление О2 в воздухе определяем по формуле
Р(О2) = 105Па·21%/100% = 0,21·105Па
Отсюда, согласно уравнения Менделеева-Клапейрона
m(O2) = PVM/RT = (0,21·105Па·1мз·32г/моль)/8,31·273К =
Рассмотрим возможность учета изменения объема или давления при протекании химической реакции, в которой участвуют или образуются газообразные продукты. Для учета этого необходимо вспомнить, что коэффициенты в уравнении химической реакции прямо пропорциональны числу молей реагирующих и образующихся веществ. Применительно к газам необходимо учесть также, что:
1 моль любого газа при н.у. занимает объем, равный
объем 1 моля любого газа значительно превышает объем 1 моля жидкого или твердого вещества (сравните: 1 моль жидкой воды – 18 смз(
Таким образом, сравнивая коэффициенты исходных веществ и продуктов реакции, можно сделать вывод об изменении объема (давления) в ходе химической реакции.
Например, в химической реакции
2СО + О2 = 2СО2
все вещества являются газами, Видно, что до реакции имелось 3 моля газа (2 моля СО и 1 моль О2), а после реакции осталось 2 моля СО2. Ясно, что объем 3 молей газа (22,4·3=67,2л) больше объема 2 молей (22,4·2=44,8л), то есть Vнач> Vкон. Значит, данная реакция протекает либо с уменьшением объема (изобарный процесс), либо с уменьшение давления (изохорный процесс).
В случае химической реакции
СО2 + С = 2СО
имеем газообразные вещества СО2 и СО и твердое вещество С. Сравниваем коэффициенты только для газообразных веществ и имеем для исходных веществ 1 и конечных веществ 2. Так как 1 < 2, то объем системы в ходе химической реакции увеличивается (либо увеличивается давление при изохорном процессе).
Таким образом, используя понятие “моль вещества” в совокупности с другими определениями, для любого химического соединения (вещества) можно определить:
массу одного атома или молекулы конкретного химического вещества;
число атомов или молекул вещества в заданной его массе;
объем заданной массы газа при нормальных условиях;
массы реагирующих и образующихся веществ;
параметры газа и смеси газов.
ЭКВИВАЛЕНТ ХИМИЧЕСКИЙ, условная частица, в целое число раз меньшая (или равная) соответствующей ей формульной единицы – атома, молекулы, иона, радикала и др. В одной формульной единице в-ва В может содержаться z(B) эквивалентов химических этого в-ва. Число z(B) (эквивалентное число) показывает, сколько эквивалентов химических содержится в одной формульной единице; всегда z(B)1. Значения z(В) зависят от хим. р-ции, в к-рой данное в-во участвует.
В обменных р-циях значения z(B) определяются стехиометрией р-ции. Напр., для р-ции A12(SO4)3+12KOH 2К3[А1(ОН)6] + 3K2SO4 на одну формульную единицу A12(SO4)3 затрачивается 12 формульных единиц КОН. Следовательно, значение z[Al2(SO4)3] =
значение z = 5, а значение эквивалента химического для анионов МnО-4 равно 1/5 формульной единицы
Кол-во в-ва эквивалента химического в-ва В – nэк(В) – величина, пропорциональная числу эквивалентов химических этого в-ва Nэк(B):
nэк(B)=Nэк(B)/NA,
где NA – постоянная Авогадро. Единица измерения кол-ва в-ва эквивалента химического – моль. Так как в одной формульной единице в-ва В может содержаться z(B) эквивалентов химических этого в-ва, то
где Nфе – число формульных единиц в-ва В. Следовательно:
где nв – кол-во в-ва В.
Молярная масса эквивалента химического в – в а В – МЭК(В) – это масса в-ва В (тв), деленая на кол-во в-ва эквивалента химического:
Значение МЭК(В) можно найти, исходя из молярной массы в-ва В (Мв, г/моль):
Молярная концентрация эквивалента химического растворенного в – ва В – сЭК(В) представляет собой отношение кол-ва в-ва эквивалента химического nЭК(В) к объему р-ра Vp:
cЭК(B) = nЭК(B)/Vp
Единица измерения сЭК(В) – моль/л, обозначение этой единицы – “н.” (нормальность – число эквивалентов химических растворенного в-ва в
Объем эквивалента химического газообразного в-ва В – VЭК(B) представляет собой отношение объема данного газа VВ к кол-ву в-ва эквивалента химического в-ва В:
Единица измерения VЭК(В) – л/моль. Поскольку для газов, принимаемых условно за идеальные, nв = VB/Vn, где Vп = 22,414 л/моль, то
Т. обр., VЭК(B) в конкретной хим. р-ции, протекающей в нормальных условиях, всегда в z(В) раз меньше объема 1 моля идеального газа.
Закон эквивалента химического гласит: элементы всегда соединяются между собой в определенных массовых кол-вах, соответствующих их эквивалентам химическим или: в р-циях всегда участвуют равные кол-ва в-ва эквивалентов химических. Поэтому для р-ции, в к-рой взаимод. в-ва А и В, будут справедливы равенства:
Чтобы найти эквивалентную массу простого вещества, воспользуйтесь формулой:Mэкв = Mа/B, где Mэкв – масса эквивалента;Mа – атомная масса элемента; B – валентность.Например, согласно формуле эквивалентная масса натрия будет равна 22,99 г/моль, а двухвалентной серы – 32/2 = 16 г/моль и т.д. Для сложных веществ молярной массой эквивалента будет называться количество вещества, прореагировавшего без остатка с одним эквивалентом другого вещества, например, водорода.
Помните, что расчет этой величины для разных химических соединений имеет нюансы. Например, при вычислении эквивалентной массы оксидов – складывайте значения эквивалентных масс, составляющих соединение. Допустим, дан оксид цинка. Сначала
считаете Mэкв (Zn) = 65/2 =32,5 г/моль. Потом – Mэкв (O) = 16/2 = 8 г/моль. Таким образом, получите эквивалентную массу ZnO равную 40,5 г/моль. А рассчитать массу эквивалента кислоты можно, разделив ее молекулярную массу на количество атомов водорода, содержащихся в ней: Mэкв (H2SO4) = 98/2 = 49 г/моль и т.д.
Неорганические вещества (неорганические соединения) — это химические соединения, не являющиеся органическими, то есть, не содержащие углерода (кроме карбидов, цианидов, карбонатов, оксидов углерода и некоторых других соединений[⇨], которые традиционно относят к неорганическим). Неорганические соединения не имеют характерного для органических углеродного скелета.