Дисперсные системы

June 15, 2024
0
0
Зміст

Дисперсные системы. ВМС

 

Основные понятия

Дисперсные системы – это гетерогенные системы, состоящие из двух или большего числа фаз с сильно развитой поверхностью раздела между ними. Особые свойства дисперсных систем обусловлены именно малым размером частиц и наличием большой межфазной поверхности. В связи с этим определяющими являются свойства поверхности, а не частиц в целом. Характерными являются процессы, происходящие на поверхности, а не внутри фазы. Отсюда становится понятным, почему коллоидную химию называют физико-химией поверхностных явлений и дисперсных систем.

Особенность дисперсных систем состоит в их дисперсности – одна из фаз обязательно должна быть раздробленной, ее называют дисперсной фазой. Сплошная среда, в которой распределены частицы дисперсной фазы, называется дисперсионной средой. Фаза считается дисперсной, если вещество раздроблено хотя бы в одном направлении. Если вещество раздроблено только по высоте, образуются пленки, ткани, пластины и т. д. Если вещество раздроблено и по высоте и по ширине, образуются волокна, нити, капилляры. Наконец, если вещество раздроблено по всем трем направлениям, дисперсная фаза состоит из дискретных (отдельных) частиц, форма которых может быть самой разнообразной.

Дисперсные системы можно классифицировать по многим признакам, что связано с огромным множеством объектов, которые изучает коллоидная химия. В качестве основного классификационного признака можно выделить размер частиц дисперсной фазы:

Грубодисперсные (> 10 мкм): сахар-песок, грунты, туман, капли дождя, вулканический пепел, магма и т. п.

Среднедисперсные (0,1-10 мкм): эритроциты крови человека, кишечная палочка и т. п.

Высокодисперсные (1-100 нм): вирус гриппа, дым, муть в природных водах, искусственно полученные золи различных веществ, водные растворы природных полимеров (альбумин, желатин и др.) и т. п.

Наноразмерные (1-10 нм): молекула гликогена, тонкие поры угля, золи металлов, полученные в присутствии молекул органических веществ, ограничивающих рост частиц, углеродные нанотрубки, магнитные нанонити из железа, никеля и т. п.

Здесь отметим, что классификацию дисперсных систем по размеру частиц мы рассматриваем первой не случайно. Именно размер частиц (линейный размер, а не вес и не число частиц атомов в частице!) является важнейшим количественным показателем дисперсных систем, определяющим их качественные особенности. По мере изменения размеров частиц изменяются все основные свойства дисперсных систем: реакционная, адсорбционная способность; оптические, каталитические свойства и т. д. Современная коллоидная химия изучает дисперсные системы с широким диапазоном размеров частиц: от грубодисперсных (10-6-104 м) до высокодисперсных или собственно коллоидных (10-9-107 м).

Под взаимодействием фаз дисперсных систем подразумевают процессы сольватации (гидратации в случае водных систем), т. е. образование сольватных (гидратных) оболочек из молекул дисперсионной среды вокруг частиц дисперсной фазы. Соответственно, по интенсивности взаимодействия между веществами дисперсной фазы и дисперсионной среды (только для систем с жидкой дисперсионной средой), по предложению Г. Фрейндлиха различают следующие дисперсные системы:

Лиофильные (гидрофильные, если ДС – вода): мицеллярные растворы ПАВ, критические эмульсии, водные растворы некоторых природных ВМС, например, белков (желатина, яичного белка), полисахаридов (крахмала). Для них характерно сильное взаимодействие частиц ДФ с молекулами ДС. В предельном случае наблюдается полное растворение. Лиофильные дисперсные системы образуются самопроизвольно вследствие процесса сольватации. Термодинамически агрегативно устойчивы.

Лиофобные (гидрофобные, если ДС – вода): эмульсии, суспензии, золи. Для них характерно слабое взаимодействие частиц ДФ с молекулами ДС. Самопроизвольно не образуются, для их образования необходимо затратить работу. Термодинамически агрегативно неустойчивы (т. е. имеют тенденцию к самопроизвольной агрегации частиц дисперсной фазы), их относительная устойчивость (так называемая метастабильность) обусловлена кинетическими факторами (т. е. низкой скоростью агрегации).

По агрегатному состоянию фаз В. Оствальд предложил ставшую весьма распространенной классификацию:

Таблица 1. Классификация дисперсных систем по агрегатному состоянию фаз

       ДС

ДФ

Жидкая

Газообразная

Твердая

Твердая

Т/Ж – суспензии, золи: суспензии металлов и других твердых частиц, золи металлов и их оксидов

Т/Г – пыли, дымы, порошки: промышленные выбросы твердых частиц в атмосферу, дым от костра, песчаные бури, мучная и дорожная пыль в воздухе, аэрозоли твердых лекарственных веществ

Т/Т – сплавы, твердые коллоидные растворы: сплавы металлов, оксидные и металлоксидные композиционные материалы, минералы

Жидкая

Ж/Ж – эмульсии, кремы: молоко, сметана, нефть, косметические кремы

Ж/Г – аэрозоли с жидкой ДФ: туман, капли дождя, распыленная струя охлаждающей жидкости, распыленные в воздухе духи, жидкое топливо в камере сгорания) туманы

Ж/Т – пористые тела, заполненные жидкостью, капиллярные тела, гели: клетки живых организмов, жемчуг, глины, яблоко

Газооб-разная

Г/Ж – пены: мыльная пена, пивная пена, пена для тушения пожаров

Г/Т – пористые и капиллярные системы, ксерогели: пемза, активированный уголь, силикагель, пенопласт, древесина, бумага, картон, текстильные ткани

 

В соответствии с кинетическими свойствами дисперсной фазы различают свободнодисперсные и связнодисперсные системы. Выделяют также разбавленные и концентрированные системы. В связнодисперсных системах одна из фаз структурно закреплена (между частицами реализуется взаимодействие, они «связаны» друг с другом) и не может перемещаться свободно. В свободнодисперсных системах частицы обособлены и участвуют в тепловом движении и диффузии. В разбавленных связнодисперсных системах частицы образуют сплошную пространственную сетку (дисперсную структуру) – возникают гели. Дисперсные системы любого типа, полученные в концентрированном состоянии (пасты, мази, густые золи, густые аэрозоли и т. п.), также относят к связнодисперсным системам. В концентрированных дисперсных системах независимое движение частиц дисперсной фазы затруднено, и для них характерна некоторая степень структурированности, что и позволяет их рассматривать как связнодисперсные системы.

 

Получение и очищение дисперсных систем

Огромное разнообразие типов и форм дисперсных систем, которое встречается во всех областях жизнедеятельности человека, предполагает и многочисленность методов их получения – как общих, так и специальных. Логично рассмотреть по отдельности методы, в основе которых лежит один из подходов – конденсационный или диспергационный.

Действительно, механическое диспергирование является основным способом измельчения материалов, который применяется в промышленности и повсеместно встречается в природе. При механическом диспергировании преодоление межмолекулярных сил и накопление поверхностной энергии в процессе дробления происходят при совершении над системой внешней механической работы. Механическое диспергирование осуществляют различными способами: истиранием, раздавливанием, раскалыванием, распылением, барботажем (пропусканием струи воздуха через жидкость), встряхиванием, взрывом, действием звуковых и ультразвуковых волн и т. п. В промышленности так получают стройматериалы (цемент, бетонную крошку, сухие краски, шпатлевки и другие строительные смеси в виде сухих порошков и суспензий), лекарственные средства (порошки, мази, пасты, эмульсии), пищевые продукты (пряности, молотый кофе) и др. Механическим диспергированием обычно удается получить дисперсные системы только с довольно большим размером частиц (не менее 100 нм). Измельчением получают дисперсные системы Т, Т/Ж и Ж/Ж.

Пептизацией называют переход осадков в коллоидный раствор под действием специальных стабилизирующих добавок (пептизаторов), либо за счет удаления из системы ионов, способствующих агрегации частиц. В роли пептизаторов могут выступать раствор электролита, поверхностно-активного вещества или растворитель. Пептизировать можно только свежеприготовленные осадки, в которых частицы коллоидного размера соединены в более крупные агрегаты через прослойки ДС. По мере хранения осадков происходят явления рекристаллизации и старения, приводящие к сращиванию частиц друг с другом, что препятствует пептизации. Пептизацию относят к методам диспергирования условно, т. к. в ее основе лежит и метод конденсации, т. е. предварительное получение агрегатов из истинных растворов. Метод пептизации, в отличие от других диспергационных методов, позволяет также добиться получения коллоидных систем с малым размером частиц (до 1 нм), что характерно в основном для методов конденсации.

К конденсационным способам получения дисперсных систем относятся конденсация, кристаллизация и десублимация. Они основаны на образовании новой фазы в условиях пересыщенного состояния веществ в газовой или жидкой среде. Необходимым условием конденсации является пересыщение и неравномерное распределение веществ в дисперсионной среде (флуктуации концентрации), а также образование центров конденсации или зародышей. При этом система из гомогенной переходит в гетерогенную. Конденсация и десублимация характерны для газовой, а кристаллизация для жидкой среды.

Методы конденсации не требуют специальных машин и дают возможность получать дисперсные системы с меньшим размером частиц по сравнению с диспергационными методами. В частности, диспергационные методы (за исключением метода пептизации и метода Бредига) не позволяют получать наноразмерные дисперсные системы (1-100 нм). Для этой цели обычно используют конденсационные методы. При этом в зависимости от условий синтеза формируются частицы дисперсной фазы любых размеров. Еще одно преимущество конденсационного подхода заключается в том, что он в большинстве случаев не требуют существенной затраты внешней работы.

Для удаления низкомолекулярных примесей (в частности, дестабилизирующих электролитов) золи после получения часто подвергают очистке. Методами очистки золей являются диализ и ультрафильтрация.

Диализ основан на разнице в скорости диффузии небольших молекул или ионов и частиц коллоидных размеров через полупроницаемую перегородку – мембрану. Для этих целей применяют мембраны, изготовленные из животных и растительных перепонок, задубленного желатина, мембраны из коллодия, ацетата целлюлозы и целлофана, пергаментной бумаги, керамических пористых материалов и др.

Небольшие молекулы и ионы из золя проникают через мембрану и диффундируют в воду, контактирующую с мембраной, а молекулы воды при этом проникают через мембрану в обратном направлении. В результате после очистки коллоидная система оказывается разбавленной. Очистка коллоидных растворов таким способом требует значительного времени (дни, недели и даже месяцы). Для ускорения диализа можно применять разные приемы, например, увеличивать площадь мембраны, уменьшать слой очищаемой жидкости или часто менять внешнюю жидкость (воду), повышать температуру, прикладывать электрическое поле (электродиализ). В частности, электродиализ позволяет закончить процесс диализа в течение нескольких часов. В производственных условиях диализом очищают от солей белки (желатин, агар-агар, гуммиарабик), красители, силикагель, дубильные вещества и др

В процессе ультрафильтрации мембраной задерживаются частицы дисперсной фазы или макромолекулы, а дисперсионная среда с нежелательными низкомолекулярными примесями проходит через мембрану. Ультрафильтрация относится к баромембранным процессам, в отличие от диализа ее проводят под давлением. При ультрафильтрации достигают высокой степени очистки золей при одновременном их концентрировании. Иногда говорят, что ультрафильтрация – это диализ, проводимый под давлением, хотя это и не совсем верно (особо любознательные из Вас могут подумать почему).

 

Свойства дисперсных систем

Для того, чтобы более четко представлять процессы, которые лежат в основе, например, вышеописанных мембранных процессов – диализа и ультрафильтрации, целесообразно рассмотреть молекулярно-кинетические свойства растворов, которые обусловлены хаотическим тепловым движением молекул и атомов. Законы этого самопроизвольного движения изучает молекулярно-кинетическая теория. Некоторые свойства растворов обусловлены этим движением, т. е. определяются не составом, а числом кинетических единиц – молекул в единице объема или массы. К ним относятся свойства, которые называются коллигативными: диффузия, осмотическое давление, различия в давлении пара и температур замерзания и кипения в случае чистого растворителя и раствора.

Броуновское движение – это непрерывное беспорядочное движение частиц микроскопических и коллоидных размеров, не затухающие во времени. Это движение тем интенсивнее, чем выше температура и чем меньше масса частицы и вязкость дисперсионной среды.

Для количественной характеристики броуновского движения используется средний сдвиг , который связан с коэффициентом диффузии уравнением Эйнштейна-Смолуховского:

,

где D – коэффициент диффузии, t – время диффузии

Диффузией называется самопроизвольный процесс выравнивания концентрации молекул, ионов или коллоидных частиц под влиянием их теплового движения. Процесс диффузии идет самопроизвольно, поскольку он сопровождается увеличением энтропии системы. Напомним, что равномерное распределение вещества в системе отвечает ее наиболее вероятному состоянию.

Для количественного описания диффузии используется закон Фика, который был установлен по аналогии с законами переноса тепла и электричества:

,

где dQ – количество продиффундировавшего вещества; D – коэффициент диффузии; dc/dx – градиент концентрации; s – площадь, через которую идет диффузия; τ – продолжительность диффузии.

Осмос – это односторонняя диффузия молекул растворителя через полупроницаемую мембрану при условии разности концентраций раствора по обе стороны мембраны. При разделении двух растворов различной концентрации или раствора и чистого растворителя полупроницаемой перегородкой (мембраной) возникает поток растворителя от меньшей концентрации вещества к большей, что приводит к выравниванию концентраций. Возникновение потока обусловлено тем, что число ударов молекул растворителя о мембрану со стороны более разбавленного раствора (или чистого растворителя) будет больше, чем со стороны более концентрированного раствора. Это избыточное число ударов и является причиной перемещения растворителя через поры мембраны туда, где молекул меньше.

Для коллоидных систем можно записать

.

Седиментация – это еще одно из явлений, связанных с молекулярно-кинетическими свойствами дисперсных систем.

Седиментацией называют процесс оседания (в редких случаях всплывание) частиц дисперсной фазы в жидкой или газообразной среде под действием силы тяжести. Седиментация характерна для суспензий. В эмульсиях, наоборот, частицы дисперсной фазы обычно всплывают

 

Устойчивость дисперсных систем

Современная модель строения мицеллы учитывает тот факт, что противоионы располагаются в два слоя – плотный и диффузный, и что поверхностью скольжения частицы в растворе является граница между этими слоями

Наиболее важным электрокинетическим явлением, которое типично для дисперсных систем, является электрофорез, т. е. перемещение коллоидных частиц во внешнем электрическом поле.

Электрофорез и электроосмос – это электрокинетические явления I-го рода. К электрокинетическим явлениям II-го рода относятся потенциал протекания и потенциал седиментации, которые заключаются в возникновении разности потенциалов при перемещении частиц дисперсной фазы или дисперсионной среды.

 

Величина ζпотенциала связана со скоростью электрофореза заряженных частиц уравнением Гельмгольца-Смолуховского:

где k – коэффициент, зависящий от формы частиц (для сфер k = 6, для цилиндров k = 4); v – линейная скорость перемещения частиц (или границы золя); ε – относительная диэлектрическая проницаемость; E – напряженность электрического поля.

В дисперсных системах удельная поверхность дисперсной фазы очень велика. Одно из наиболее важных следствий большой поверхности дисперсной фазы заключается в том, что лиофобные дисперсные системы обладают избыточной поверхностной энергией, а, следовательно, являются термодинамически неустойчивыми. Поэтому в дисперсных системах протекают различные самопроизвольные процессы, которые ведут к уменьшению избытка энергии. Наиболее общими являются процессы уменьшения удельной поверхности за счет укрупнения частиц. В итоге такие процессы приводят к разрушению системыТаким образом, ключевое свойство, которое характеризует само существование дисперсных систем – это их устойчивость, или, наоборот, неустойчивость.

Н.П. Песковым в 1920 г было предложено различать кинетическую и агрегативную устойчивости. В первом случае рассматривается выделение диспергированной фазы под действием силы тяжести в зависимости от степени дисперсности, а сама степень дисперсности полагается величиной, постоянной для данной системы. Во втором случае рассматриваются условия постоянства или непостоянства самой степени дисперсности частиц

Для большинства гидрофобных золей основным фактором, обеспечивающим их стабильность (наряду с гидратной оболочкой), является наличие одноименного заряда у частиц дисперсной фазы. Введение электролитов в гидрозоли может приводить к уменьшению или полной нейтрализации заряда коллоидных частиц, что ослабляет их электростатическое отталкивание, способствует сближению и агрегации

Минимальная концентрация электролита, которая вызывает начало процесса коагуляции называется порогом коагуляции gк (моль/дм3).

 

Растворы высокомолекулярных веществ

Полимеры, подобно низкомолекулярным веществам, в зависимости от условий получения раствора (природа полимера и растворителя, температура и др.) могут образовывать как коллоидные, так и истинные растворы. В связи с этим принято говорить о коллоидном или истинном состоянии вещества в растворе. Мы не будем касаться систем «полимер – растворитель» коллоидного типа. Рассмотрим только растворы полимеров молекулярного типа. Следует отметить, что вследствие больших размеров молекул и особенностей их строения, растворы ВМС обладают рядом специфических свойств:

1. Равновесные процессы в растворах ВМС устанавливаются медленно.

2. Процессу растворения ВМС, как правило, предшествует процесс набухания.

3. Растворы полимеров не подчиняются законам идеальных растворов, т.е. законам Рауля и Вант-Гоффа.

4. При течении растворов полимеров возникает анизотропия свойств (неодинаковые физические свойства раствора в разных направлениях) за счет ориентации молекул в направлении течения.

5. Высокая вязкость растворов ВМС.

6. Молекулы полимеров, благодаря большим размерам, проявляют склонность к ассоциации в растворах. Время жизни ассоциатов полимеров более длительное, чем ассоциатов низкомолекулярных веществ.

Процесс растворения ВМС протекает самопроизвольно, но в течение длительного времени, и ему часто предшествует набухание полимера в растворителе. Полимеры, макромолекулы которых имеют симметричную форму, могут переходить в раствор, предварительно не набухая. Например, гемоглобин, печеночный крахмал – гликоген при растворении почти не набухают, а растворы этих веществ не обладают высокой вязкостью даже при сравнительно больших концентрациях. В то время, как вещества с сильно асимметрическими вытянутыми молекулами при растворении очень сильно набухают (желатин, целлюлоза, натуральный и синтетические каучуки).

Набухание – это увеличение массы и объема полимера за счет проникновения молекул растворителя в пространственную структуру ВМС.

Различают два вида набухания: неограниченное, заканчивающееся полным растворением ВМС (например, набухание желатины в воде, каучука в бензоле, нитроцеллюлозы в ацетоне) и ограниченное, приводящее к образованию набухшего полимера – студня (например, набухание целлюлозы в воде, желатина в холодной воде, вулканизованного каучука в бензоле).

 

Leave a Reply

Your email address will not be published. Required fields are marked *

Приєднуйся до нас!
Підписатись на новини:
Наші соц мережі