Лекция№17
Дыхательная система.
Принципы организации дыхательной системы.
Дыхательная система включает два отдела: воздухоносные пути и респираторный отдел. В состав органов дыхания также входят дыхательные мышцы, плевральные полости, собственный нервный аппарат, эндокринные клетки, иммунокомпетентные клетки, чувствительные и двигательные нервные окончания, образованные отростками нейронов собственного нервного аппарата и нейронов симпатического и парасимпатического отделов. Дыхательная система имеет мощную иммунологическую защиту.
Пренатальное развитие
Развитие дыхательной системы начинается на 4-й неделе. На 26-й день в каудальной части первичной глотки (позади 4-й пары глоточных карманов) по срединной линии дна глотки появляется гортанно-трахейная (ларинготрахеальная) борозда.
Энтодерма, выстилающая гортанно-трахейную борозду, даёт начало эпителию и железам гортани, трахеи, бронхов и лёгочной эпителиальной выстилке. Соединительная ткань, хрящи, ГМК развиваются из спланхнической мезодермы, окружающей первичную кишку.
Начальные стадии развития органов дыхания. В конце 3-й–начале 4-й недели в стенке передней кишки образуется выпячивание (респираторный дивертикул). По обе стороны от выпячивания формируются вдающиеся в просвет первичной кишки продольные валики — эзофаготрахеальные гребни, которые затем сближаются и смыкаются. Так образуется перегородка, отделяющая первичную кишку (будущий пищевод) от респираторного дивертикула. Последний даёт начало трахее, заканчивающейся на каудальном конце двумя мешковидными образованиями — лёгочными почками. А — в конце 3‑й недели, Б и В — на 4‑й неделе.
Воздухоносные пути
Просвет воздухоносных путей и альвеол лёгкого — внешняя среда.
Везде – в воздухоносных путях и на поверхности альвеол – расположен пласт эпителия. Эпителий воздухоносных путей осуществляет защитную функцию, которая выполняется, с одной стороны, самим фактом присутствия пласта эпителия; с другой стороны, за счёт секреции защитного материала — слизи. Её продуцируют присутствующие в составе эпителия бокаловидные клетки. Кроме того, под эпителием находятся железы, также секретирующие слизь; выводные протоки этих желёз открываются на поверхность эпителия.
Воздухоносные пути функционируют как установка для кондиционирования воздуха
Характеристики внешнего воздуха (температура, влажность, загрязнённость частицами разного сорта, наличие микроорганизмов) варьируют весьма значительно. Но в респираторный отдел должен поступать воздух, отвечающий определённым требованиям. Функцию доведения воздуха до необходимых кондиций и выполняют воздухоносные пути.
Очистка воздуха. Посторонние частицы осаждаются в находящейся на поверхности эпителия слизистой плёнке. Далее загрязнённая слизь удаляется из воздухоносных путей при её постоянном перемещении по направлению к выходу из дыхательной системы с последующим откашливанием. Такое постоянное движение слизистой плёнки обеспечивается за счёт направленных к выходу из воздухоносных путей синхронных и волнообразных колебаний ресничек, находящихся на поверхности эпителиальных клеток. Кроме того, перемещением слизи к выходу предупреждается её попадание на поверхность альвеолярных клеток, через которые происходит диффузия газов.
Поддержание температуры и влажности. Кондиционирование температуры и влажности вдыхаемого воздуха осуществляется при помощи крови, находящейся в сосудистом русле стенки воздухоносных путей. Этот процесс происходит главным образом в начальных отделах, а именно в носовых ходах.
Слизистая оболочка воздухоносных путей участвует в защитных реакциях
В составе эпителия слизистой оболочки присутствуют внутриэпителиальные дендроциты, тогда как собственный слой содержит значительное количество различных иммунокомпетентных клеток (T– и B–лимфоциты; плазматические клетки, синтезирующие и секретирующие IgG, IgA, IgE; макрофаги, дендритные клетки).
Тучные клетки весьма многочисленны в собственном слое слизистой оболочки воздухоносных путей. Гистамин тучных клеток вызывает бронхоспазм, вазодилатацию, гиперсекрецию слизи из желёз и отёк слизистой оболочки (как результат вазодилатации и увеличения проницаемости стенки посткапиллярных венул). Кроме гистамина, тучные клетки, наряду с эозинофилами и другими клетками воспаления, выделяют ряд медиаторов; действие которых приводит к воспалению и отёку слизистой оболочки, повреждению эпителия, сокращению ГМК и сужению просвета воздухоносных путей. Все вышеперечисленные эффекты характерны для бронхиальной астмы.
Воздухоносные пути не спадаются
Более того, их просвет постоянно изменяется и регулируется в связи с реальной ситуацией. Спадение просвета воздухоносных путей предотвращает присутствие в их стенке структур, образованных в начальных отделах костной, а далее — хрящевой тканью. Изменение величины просвета воздухоносных путей обеспечивают складки слизистой оболочки, активность ГМК и эластические структуры стенки.
Воздухоносные пути — носовые ходы с обонятельным эпителием, носоглотка, гортань, трахея, бронхи разных калибров, бронхиолы. Функция воздухоносных путей — проведение воздуха к респираторному отделу; они же выполняют функцию голосообразования и обоняния. Стенка воздухоносных путей в типичном случае состоит из четырёх оболочек: слизистой, подслизистой, фиброзно-хрящевой и адвентициальной. В стенке воздухоносных путей также присутствуют кровеносные и лимфатические сосуды, нейроны собственного нервного аппарата, чувствительные нервные окончания, нервные окончания вегетативной нервной системы. Рассмотрите состав воздухоносных путей — полость носа, гортань, трахея, бронхи разного калибраВыясните, что характерным признаком строения слизистой оболочки воздухоносных путей является наличие в ее составе однослойного многорядного реснитчатого эпителия. Рассмотрите его клеточный состав (реснитчатые, бокаловидные, стволовые, эндокринные, каёмчатые клетки, клетки Клара, антигенпрезентирующие клетки: дендритные клетки и клетки Лангерганса) Определите функциональное значение каждого вида клеток, роль их коопераций (например: формирование мукоцилиарного комплекса, лимфо-эпителиального симбиоза) в осуществлении специфических функций воздухоносних путей и обеспечении их структурного гомеостаза. Выясните физиологический смысл уменьшения количества мукоцитов и реснитчатых клеток, а также рост числа клеток Клара в меру уменьшения калибра бронхов. Обратите внимание на изменения клеточного состава покровного эпителия при дефиците в организме витамина А, при хронических воспалительных процессах.Дальше необходимо проследить структурно функциональные взаимосвязи между эпителиоцитами, клетками подлежащей соединительной ткани и гладкими миоцитами в пределах слизистой оболочки бронхов. Выясните особенности строения рыхлой соединительной ткани собственной пластинки, наличие и роль в ней Т- и В-лимфоцитов, плазмоцитов, макрофагов, дендритных клеток и тканевых базофилов, а также ретикулярных волокон — естественной стромы для лимфоидных элементов. Определите характер расположения в ней эластичных элементов — в продольном направлении, которое обеспечивает возможность растягивания и уменьшения просвета органа во время дыхания. Обратите внимание на локализацию и характер просвета сосудов микроциркуляторного русла в собственной пластинке, их роль в кондиционировании воздуха.
Слизистая оболочка
Слизистую оболочку образуют однослойный многорядный мерцательный эпителий, собственный слой и мышечный слой. Мышечный слой отсутствует в верхних отделах, но появляется в нижних. Собственный слой представлен рыхлой соединительной тканью со значительным количеством ретикулиновых и эластических волокон. Здесь присутствуют тучные клетки, фибробласты, макрофаги, дендритные клетки, T– и B–лимфоциты, плазматические клетки. Эпителий содержит реснитчатые, бокаловидные, базальные, нейроэндокринные, щёточные (каёмчатые), хеморецепторные клетки, бронхиолярные экзокриноциты (в терминальном отделе воздухоносных путей), внутриэпителиальные дендроциты.
Морфофункциональные особенности клеток покровного эпителия воздухоносных путей
Реснитчатые клетки
Основную массу эпителия воздухоносных путей составляют реснитчатые клетки, содержат до 250 ресничек на апикальной поверхности. Эти клетки имеют рецепторы для многих веществ. В зависимости от вида активированных рецепторов реакция реснитчатых клеток может быть различной.
Функции реснитчатых клеток
1. Транспорт ионов и продвижение слизи. Ряд агентов стимулирует активный ионный транспорт через эпителиальные клетки, а именно секрецию ионов Cl– и абсорбцию ионов Na+, соответственно увеличивая или уменьшая транспорт воды через эпителий, а также может изменять частоту биения ресничек эпителиальных клеток, что влияет на эффективность продвижения слизи, т.е. на уровень очистки вдыхаемого воздуха
2. Синтез и секреция биологически активных веществ.
Рецепторы глюкокортикоидов. Эпителиальные клетки воздухоносных путей содержат многочисленные рецепторы глюкокортикоидов.
Дыхательная система включает два отдела: воздухоносные пути и респираторный отдел. В состав органов дыхания также входят дыхательные мышцы, плевральные полости, собственный нервный аппарат, эндокринные клетки, иммунокомпетентные клетки, чувствительные и двигательные нервные окончания, образованные отростками нейронов собственного нервного аппарата и нейронов симпатического и парасимпатического отделов. Дыхательная система имеет мощную иммунологическую защиту
.Просвет воздухоносных путей и альвеол лёгкого — внешняя среда
Везде — в воздухоносных путях и на поверхности альвеол — расположен пласт эпителия. Эпителий воздухоносных путей осуществляет защитную функцию, которая выполняется, с одной стороны, самим фактом присутствия пласта эпителия; с другой стороны, за счёт секреции защитного материала — слизи. Её продуцируют присутствующие в составе эпителия бокаловидные клетки. Кроме того, под эпителием находятся железы, также секретирующие слизь; выводные протоки этих желёз открываются на поверхность эпителия.
Воздухоносные пути функционируют как установка для кондиционирования воздуха
Характеристики внешнего воздуха (температура, влажность, загрязнённость частицами разного сорта, наличие микроорганизмов) варьируют весьма значительно. Но в респираторный отдел должен поступать воздух, отвечающий определённым требованиям. Функцию доведения воздуха до необходимых кондиций и выполняют воздухоносные пути.
Очистка воздуха. Посторонние частицы осаждаются в находящейся на поверхности эпителия слизистой плёнке. Далее загрязнённая слизь удаляется из воздухоносных путей при её постоянном перемещении по направлению к выходу из дыхательной системы с последующим откашливанием. Такое постоянное движение слизистой плёнки обеспечивается за счёт направленных к выходу из воздухоносных путей синхронных и волнообразных колебаний ресничек, находящихся на поверхности эпителиальных клеток. Кроме того, перемещением слизи к выходу предупреждается её попадание на поверхность альвеолярных клеток, через которые происходит диффузия газов.
Поддержание температуры и влажности. Кондиционирование температуры и влажности вдыхаемого воздуха осуществляется при помощи крови, находящейся в сосудистом русле стенки воздухоносных путей. Этот процесс происходит главным образом в начальных отделах, а именно в носовых ходах.
Слизистая оболочка воздухоносных путей участвует в защитных реакциях
В составе эпителия слизистой оболочки присутствуют внутриэпителиальные дендроциты, тогда как собственный слой содержит значительное количество различных иммунокомпетентных клеток (T– и B–лимфоциты; плазматические клетки, синтезирующие и секретирующие IgG, IgA, IgE; макрофаги, дендритные клетки).
Тучные клетки весьма многочисленны в собственном слое слизистой оболочки воздухоносных путей. Гистамин тучных клеток вызывает бронхоспазм, вазодилатацию, гиперсекрецию слизи из желёз и отёк слизистой оболочки (как результат вазодилатации и увеличения проницаемости стенки посткапиллярных венул). Кроме гистамина, тучные клетки, наряду с эозинофилами и другими клетками воспаления, выделяют ряд медиаторов; действие которых приводит к воспалению и отёку слизистой оболочки, повреждению эпителия, сокращению ГМК и сужению просвета воздухоносных путей. Все вышеперечисленные эффекты характерны для бронхиальной астмы.
Воздухоносные пути не спадаются
Более того, их просвет постоянно изменяется и регулируется в связи с реальной ситуацией. Спадение просвета воздухоносных путей предотвращает присутствие в их стенке структур, образованных в начальных отделах костной, а далее — хрящевой тканью. Изменение величины просвета воздухоносных путей обеспечивают складки слизистой оболочки, активность ГМК и эластические структуры стенки.
Воздухоносные пути
Воздухоносные пути — носовые ходы с обонятельным эпителием, носоглотка, гортань, трахея, бронхи разных калибров, бронхиолы. Функция воздухоносных путей — проведение воздуха к респираторному отделу; они же выполняют функцию голосообразования и обоняния. Стенка воздухоносных путей в типичном случае состоит из четырёх оболочек: слизистой, подслизистой, фиброзно-хрящевой и адвентициальной. В стенке воздухоносных путей также присутствуют кровеносные и лимфатические сосуды, нейроны собственного нервного аппарата, чувствительные нервные окончания, нервные окончания вегетативной нервной системы. Рассмотрите состав воздухоносных путей — полость носа, гортань, трахея, бронхи разного калибраВыясните, что характерным признаком строения слизистой оболочки воздухоносных путей является наличие в ее составе однослойного многорядного реснитчатого эпителия. Рассмотрите его клеточный состав (реснитчатые, бокаловидные, стволовые, эндокринные, каёмчатые клетки, клетки Клара, антигенпрезентирующие клетки: дендритные клетки и клетки Лангерганса) Определите функциональное значение каждого вида клеток, роль их коопераций (например: формирование мукоцилиарного комплекса, лимфо-эпителиального симбиоза) в осуществлении специфических функций воздухоносних путей и обеспечении их структурного гомеостаза. Выясните физиологический смысл уменьшения количества мукоцитов и реснитчатых клеток, а также рост числа клеток Клара в меру уменьшения калибра бронхов. Обратите внимание на изменения клеточного состава покровного эпителия при дефиците в организме витамина А, при хронических воспалительных процессах.Дальше необходимо проследить структурно функциональные взаимосвязи между эпителиоцитами, клетками подлежащей соединительной ткани и гладкими миоцитами в пределах слизистой оболочки бронхов. Выясните особенности строения рыхлой соединительной ткани собственной пластинки, наличие и роль в ней Т- и В-лимфоцитов, плазмоцитов, макрофагов, дендритных клеток и тканевых базофилов, а также ретикулярных волокон — естественной стромы для лимфоидных элементов. Определите характер расположения в ней эластичных элементов — в продольном направлении, которое обеспечивает возможность растягивания и уменьшения просвета органа во время дыхания. Обратите внимание на локализацию и характер просвета сосудов микроциркуляторного русла в собственной пластинке, их роль в кондиционировании воздуха.
Слизистая оболочка
Слизистую оболочку образуют однослойный многорядный мерцательный эпителий, собственный слой и мышечный слой. Мышечный слой отсутствует в верхних отделах, но появляется в нижних. Собственный слой представлен рыхлой соединительной тканью со значительным количеством ретикулиновых и эластических волокон. Здесь присутствуют тучные клетки, фибробласты, макрофаги, дендритные клетки, T– и B–лимфоциты, плазматические клетки. Эпителий содержит реснитчатые, бокаловидные, базальные, нейроэндокринные, щёточные (каёмчатые), хеморецепторные клетки, бронхиолярные экзокриноциты (в терминальном отделе воздухоносных путей), внутриэпителиальные дендроциты.
Морфофункциональные особенности клеток покровного эпителия воздухоносных путей
Реснитчатые клетки
Основную массу эпителия воздухоносных путей составляют реснитчатые клетки, содержат до 250 ресничек на апикальной поверхности. Эти клетки имеют рецепторы для многих веществ. В зависимости от вида активированных рецепторов реакция реснитчатых клеток может быть различной.
Функции реснитчатых клеток
1. Транспорт ионов и продвижение слизи. Ряд агентов стимулирует активный ионный транспорт через эпителиальные клетки, а именно секрецию ионов Cl– и абсорбцию ионов Na+, соответственно увеличивая или уменьшая транспорт воды через эпителий, а также может изменять частоту биения ресничек эпителиальных клеток, что влияет на эффективность продвижения слизи, т.е. на уровень очистки вдыхаемого воздуха
2. Синтез и секреция биологически активных веществ.
Рецепторы глюкокортикоидов. Эпителиальные клетки воздухоносных путей содержат многочисленные рецепторы глюкокортикоидов.
Бокаловидные клетки
Бокаловидные клетки (бокаловидные экзокриноциты, мукоциты) составляют до 30% клеток эпителия воздухоносных путей. Клетки расположены поодиночке, содержат вакуоли со слизистым секретом в расширенной апикальной части, а в суженной базальной — выраженные комплекс Гольджи и гранулярную эндоплазматическую сеть, многочисленные митохондрии. В латеральных участках апикальной поверхности клетки имеются микроворсинки. После выделения слизи микроворсинки бокаловидных клеток становятся заметнее, вследствие чего такие клетки получили название щёточных (каёмчатых). Выделение слизи из клеток, происходящее циклически, стимулируют внешние факторы (температура, влажность). Муцины (известно 18 генов MUC) — высоко гликозилированные (содержат до 50% углеводов) макромолекулы в составе слизи, секретируемой бокаловидными клетками. Молекула муцина характеризуется многочисленными тандемными повторами, содержащими пролин, богата сериновыми и/или треониновыми остатками. Секреторные или связанные с мембраной муцины — часть мукоцилиарного защитного механизма воздухоносных путей. Различные медиаторы воспаления, секретируемые, например, при астме, хронических обструктивных заболеваниях лёгких, кистозном фиброзе (муковисцидозе) активируют гены MUC и стимулируют гиперсекрецию слизи, а также гиперплазию бокаловидных клеток. Гиперпродукция муцина и гиперплазия бокаловидных клеток могут быть следствием активации различных сигнальных путей и путей регуляции активности генов.
Базальные клетки
Базальные клетки (30% общей популяции клеток эпителия) имеют небольшие размеры, апикальная часть клетки не достигает поверхности эпителия. Эти малодифференцированные клетки способны делиться и составляют стволовую популяцию для эпителия.
Нейроэндокринные клетки
Нейроэндокринные клетки (мелкозернистые клетки) составляют до 8% общей популяции эпителия воздухоносных путей и располагаются поодиночке или группами (в составе нейроэпителиальных телец). Эти клетки содержат электроноплотные гранулы, синтезируют и накапливают бомбезин, кальцитонин, относящийся к кальцитониновому гену пептид (CGRP, кокальцигенин), серотонин, холецистокининоподобный пептид. Высокое содержание бомбезина в лёгких отмечено сразу после рождения с последующим снижением его уровня и количества нейроэндокринных клеток. Карциноидные опухоли и некоторые мелкоклеточные карциномы лёгких характеризуются высоким содержанием этого пептида.
Нейроэпителиальные тельца расположены в местах ветвления воздухоносных путей. Тельце состоит из 4–25 клеток, снабжённых микроворсинками и контактирующих с чувствительными нервными терминалями. Клетки телец содержат сенсорную систему, регистрирующую содержание О2. Снижение концентрации О2 ведёт к деполяризации плазмолеммы и возбуждении клетки тельца с последующей секрецией серотонина. Серотонин вызывает расширение воздухоносных путей.
Каёмчатые клетки
Каёмчатые (щёточные) клетки — гетерогенная популяция клеток, имеющих многочисленные микроворсинки в апикальной части. К щёточным клеткам относят освободившиеся от секрета бокаловидные клетки, хеморецепторные клетки, а также дифференцирующиеся реснитчатые клетки.
Хеморецепторные клетки
Гранулосодержащие клетки с микроворсинками, связаны с афферентными нервными терминалями.
Вегетативные нервные терминали
В собственном слое слизистой оболочки присутствуют терминали нервных волокон вегетативного отдела нервной системы, секретирующие нейромедиаторы: для блуждающего нерва — ацетилхолин; для нейронов симпатического ствола — норадреналин. Симпатические нервные волокна проводят импульсы, вызывающие расширение бронхов и сужение кровеносных сосудов; импульсы, проходящие по парасимпатическим нервным волокнам, оказывают эффект бронхоконстрикции и вазодилатации.
Бронхиолярные экзокриноциты
Бронхиолярные экзокриноциты расположены в терминальных бронхиолах между реснитчатыми клетками и формируют дистальные (безреснитчатые) участки бронхиального эпителия. Для этих клеток характерны куполообразная форма, отсутствие ресничек, локализация митохондрий и гладкой эндоплазматической сети в базальной части клетки, а в апикальной — электронно-плотных гранул. Гранулы содержат специфический для бронхиолярных экзокриноцитов белок CC10. В цитоплазме также присутствуют гранулярная эндоплазматическая сеть, комплекс Гольджи, множество пузырьков и мультивезикулярных телец.
Бронхиолярные экзокриноциты выполняют ряд функций:
секретируют гликозаминогликаны, определяющие консистенцию секрета бронхиол. Полагают, что клетки служат источником липопротеинов сурфактанта терминальных бронхиол;
модулируют воспалительные реакции в дистальных воздухоносных путях, что опосредовано белком CC10;
содержат неспецифические эстеразы и участвуют в работе детоксикационной системы лёгких. Неспецифические эстеразы также присутствуют в пневмоцитах типа II, в альвеолярных макрофагах, в клетках эндотелия. Бронхиолярные экзокриноциты участвуют в инактивации поступающих с вдыхаемым воздухом токсинов при помощи холестерол монооксигеназы (цитохром P450) — фермента, в большом количестве содержащегося в цистернах эндоплазматической сети.
Подслизистая оболочка
Подслизистая оболочка содержит слизистые и белково-слизистые железы. По мере уменьшения калибра бронхов количество желёз уменьшается. Особенностью подслизистой основы стенки воздухоносных путей является наличие в ней сложных слизисто-белковых желез, которые вместе с мукоцилиарным клеточным комплексом покровного эпителия исполняют важную роль в увлажнении и очистке воздуха, который поступает к легким. Воздухоносные пути, в состав которых входит фиброзно-хрящевая оболочка, не спадаются, их просвет имеет почти постоянный диаметр, а изменяется диаметр терминальных отделах бронхиального дерева, что возможно благодаря относительному развитию мишечной пластинки слизестой оболочки и отсутствия хрящевого каркаса. На смену размеров просвета бронхов влияют также складки слизистой оболочки, степень развития в ней эластических волокон. Обратите внимание на механизмы регуляции тонуса гладких миоцитов (нейромедиаторы и гормоны).
Фиброзно-хрящевая оболочка
Фиброзно-хрящевая оболочка представлена гиалиновым хрящом, образующим кольца в трахее и главных бронхах, пластинки и небольшие островки вплоть до мелких бронхов. В бронхах малого калибра и бронхиолах фиброзно-хрящевая оболочка отсутствует.
Наружная оболочка
Наружная (адвентициальная) оболочка образована волокнистой соединительной тканью, в дистальных отделах связанная с междолевой, междольковой и внутридольковой соединительной тканью лёгких.
Носовая полость
Носовая полость включает в себя преддверие и собственно носовую (дыхательную) полость. Преддверие выстлано тонкой кожей, содержащей сальные, потовые железы и волосяные фолликулы. Дыхательная полость выстлана слизистой оболочкой, сменившей тонкую кожу; здесь эпидермис переходит в многорядный мерцательный эпителий, содержащий бокаловидные, базальные клетки и клетки с микроворсинками. Собственный слой слизистой оболочки содержит коллагеновые и эластические волокна, а также слизистые и белковые железы, вырабатывающие большое количество слизи.
Гортань
Гортань — верхний отдел воздухоносных путей; основная функция, помимо проведения воздуха, — голосообразование. Отделена от глотки надгортанником, а в нижней части ограничена первым хрящевым полукольцом трахеи. Имеет слизистую, фиброзно-хрящевую и адвентициальную оболочки. В состав фиброзно-хрящевой оболочки гортани входят 4 хряща — надгортанный, щитовидный, черпаловидный, перстневидный. Эпителий слизистой оболочки (за исключением голосовых связок) — многорядный мерцательный. Собственный слой передней поверхности гортани содержит смешанные белково-слизистые железы, скопления лимфатических фолликулов.
Голосовые связки
Голосовые связки — верхние и нижние складки слизистой оболочки в средней части органа, образующие соответственно ложные и истинные голосовые связки. Пространство между истинными голосовыми связками — голосовая щель. Область расширения просвета гортани между двумя рядами связок — желудочек гортани. Основу ложных голосовых связок составляет рыхлая соединительная ткань, содержащая белково-слизистые железы. Такие железы имеются также выше и ниже истинных голосовых связок. Истинные голосовые связки содержат пучки поперечнополосатых мышечных волокон; железы отсутствуют. Оба типа голосовых связок, как и передняя поверхность надгортанника, покрыты многослойным плоским неороговевающим эпителием.
Трахея
Стенка трахеи образована слизистой, подслизистой, фиброзно-хрящевой и адвентициальной оболочками.
Слизистая оболочка
Слизистая оболочка состоит из однослойного многорядного мерцательного эпителия и тонкого собственного слоя. Мышечный слой отсутствует. Собственный слой слизистой оболочки содержит многочисленные эластические волокна и немного слизистых желёз. Здесь встречаются отдельные лимфоциты и лимфатические фолликулы.
Эпителий трахеи содержит различные типы клеток. Реснитчатые клетки составляют основную часть эпителия. Среди реснитчатых рассеяны бокаловидные, базальные, щёточные (каёмчатые), нейроэндокринные, хеморецепторные клетки.
Подслизистая оболочка
Границей между слизистой и подслизистой оболочками служит уплотнённая пластинка переплетённых эластических волокон. В подслизистой оболочке расположено множество кровеносных сосудов и секреторных отделов слизистых и белково-слизистых желёз.
Фиброзно-хрящевая оболочка
Фиброзно-хрящевая оболочка представлена пластинками в виде незамкнутых колец гиалинового хряща, окружённого тонкой фиброзной оболочкой — надхрящницей. Концы колец соединены пучками соединительнотканных волокон и ГМК. Соседние кольца соединяет между собой плотная соединительная ткань (переплетённые коллагеновые и отдельные эластические волокна), переходящая в надхрящницу колец.
Адвентициальная оболочка образована волокнистой соединительной тканью.
Бронхи
Строение бронхов сходно со строением трахеи, но имеются и определённые различия.
Слизистая оболочка
Слизистая оболочка бронхов, в отличие от трахеи, обладает мышечным слоем. Этот слой состоит из ГМК, расположенных в виде двух противоположно направленных (по часовой и против часовой стрелки) спиралей. Сокращение ГМК приводит к образованию продольных складок слизистой оболочки бронха. Собственный слой слизистой оболочки содержит множество эластических волокон, организованных в виде нескольких длинных лент, идущих параллельно. Ленты переходят в эластические компоненты терминальных бронхиол. Эпителий слизистой оболочки бронхов — однослойный многорядный цилиндрический мерцательный, в нём имеются реснитчатые, бокаловидные, каёмчатые, эндокринные и базальные клетки.
Подслизистая оболочка
Подслизистая оболочка содержит слизистые и белково-слизистые железы. Железы располагаются группами, особенно в тех участках, где отсутствует хрящ. В бронхах малого калибра железы отсутствуют.
Фиброзно-хрящевая оболочка
Хрящи в виде незамкнутых колец, присутствующие в главных бронхах, в крупных внутрилёгочных бронхах сменяются хрящевыми пластинками неправильной формы, а затем островками хрящевой ткани (бронхи среднего калибра). Пространства между хрящами заполнены соединительной тканью, переходящей в надхрящницу. В бронхах малого калибра хрящевой ткани нет.
Воздухоносные пути, в состав которых входит фиброзно-хрящевая оболочка не спадаются, их просвет имеет почти постоянный диаметр, а изменяется диаметр терминальных отделах бронхиального дерева, что возможно благодаря относительному развитию мышечной пластинки слизистой оболочки и отсутствия хрящевого каркаса. На смену размеров просвета бронхов влияют также складки слизистой оболочки, степень развития в ней эластических волокон. Обратите внимание на механизмы регуляции тонуса гладких миоцитов (нейромедиаторы и гормоны).
Наружная оболочка.
Адвентициальная оболочка — соединительная ткань, переходящая в междолевую и междольковую соединительную ткань паренхимы лёгкого.
Бронхиолы отличаются от бронхов по ряду признаков: их диаметр значительно меньше и составляет от 0,5 до
бронхиолы.
Изменения стенки бронхов по мере уменьшения их калибра
Снижение высоты эпителиального пласта слизистой (от многорядного цилиндрического до двухрядного, а затем — однорядного в бронхах малого калибра и однорядного кубического в терминальных бронхиолах) с постепенным снижением количества, а затем и исчезновением бокаловидных клеток. В дистальных участках терминальных бронхиол реснитчатые клетки отсутствуют, но имеются бронхиолярные экзокриноциты.
Уменьшение толщины слизистой оболочки.
Возрастание количества эластических волокон.
Возрастание количества ГМК, так что с уменьшением калибра бронхов мышечный слой слизистой оболочки становится более выраженным.
Уменьшение размеров пластинок и островков хрящевой ткани с последующим её исчезновением.
Уменьшение количества слизистых желёз с их исчезновением в бронхах малого калибра и в бронхиолах
. Лёгочный ацинус.
Лёгочные ацинусы составляют респираторный отдел лёгких. От терминальных бронхиол отходят респираторные бронхиолы первог порядка,которые дают начало ацинусам. Бронхиолы делятся на респираторные бронхиолы второго и третьего порядка. Каждая из последних разделяется на два альвеолярных хода. Каждый альвеолярный ход через преддверие переходит в два альвеолярных мешочка. В стенках респираторных бронхиол и альвеолярных ходов имеются мешковидные выпячивания — альвеолы. Альвеолы образуют преддверия и альвеолярные мешочки. Между ацинусами имеются тонкие прослойки соединительной ткани. В состав лёгочной дольки входит 12–18 ацинусов.
Альвеолы
Альвеолы выстланы однослойным эпителием, расположенным на базальной мембране. Клеточный состав эпителия — пневмоциты типов I и II. Клетки образуют между собой плотные контакты. Альвеолярная поверхность покрыта тонким слоем воды и сурфактанта.Альвеолы — мешковидные пустоты, разделённые тонкими перегородками. Снаружи к альвеолам вплотную примыкают кровеносные капилляры, образующие густую сеть. Капилляры окружены эластическими волокнами, оплетающими альвеолы в виде пучков. Альвеола выстлана однослойным эпителием. Цитоплазма большинства эпителиальных клеток максимально уплощена (пневмоциты типа I). В ней присутствует множество пиноцитозных пузырьков. Пиноцитозные пузырьки в изобилии имеются также в плоских эндотелиальных клетках капилляров. Между пневмоцитами типа I располагаются клетки кубической формы — пневмоциты типа II. Для них характерно наличие в цитоплазме пластинчатых телец, содержащих сурфактант. Сурфактант секретируется в полость альвеолы и образует на поверхности тонкого слоя воды, покрывающего альвеолярный эпителий, мономолекулярную плёнку. Из межальвеолярных перегородок в просвет альвеол могут мигрировать макрофаги. Перемещаясь по поверхности альвеолы, они образуют многочисленные цитоплазматические отростки, с помощью которых захватывают посторонние частицы, поступающие с воздухом.
Пневмоциты типа I
Пневмоциты типа I (респираторные пневмоциты) покрывают почти 95% альвеолярной поверхности. Это плоские клетки с уплощёнными выростами; выросты соседних клеток перекрывают друг друга, смещаясь при вдохе и выдохе. По периферии цитоплазмы имеется много пиноцитозных пузырьков. Клетки не способны делиться. Функция пневмоцитов типа I — участие в газообмене. Эти клетки входят в состав аэрогематического барьера.
Пневмоциты типа II
Пневмоциты типа II вырабатывают, накапливают и секретируют компоненты поверхностноактивного вещества — сурфактанта. Клетки имеют кубическую форму. Они встроены между пневмоцитами типа I, возвышаясь над последними; изредка образуют группы из 2–3 клеток. На апикальной поверхности пневмоциты типа II имеют микроворсинки. Особенностью этих клеток является присутствие в цитоплазме пластинчатых телец диаметром 0,2–2 мкм. Окружённые мембраной тельца состоят из концентрических слоёв липидов и белков. Пластинчатые тельца пневмоцитов типа II относят к лизосомоподобным органеллам, накапливающим вновь синтезированные и рециклированные компоненты сурфактанта.
Межальвеолярная перегородка
Межальвеолярная перегородка содержит капилляры, заключённые в сеть эластических волокон, окружающих альвеолы. Эндотелий альвеолярного капилляра — уплощённые клетки, содержащие в цитоплазме пиноцитозные пузырьки. В межальвеолярных перегородках имеются небольшие отверстия — альвеолярные поры. Эти поры создают возможность для проникновения воздуха из одной альвеолы в другую, что облегчает воздухообмен. Через поры в межальвеолярных перегородках происходит также миграция альвеолярных макрофагов.
Аэрогематический барьер
Между полостью альвеолы и просветом капилляра происходит газообмен путём простой диффузии газов в соответствии с их концентрациями в капиллярах и альвеолах. Следовательно, чем меньше структур между полостью альвеолы и просветом капилляра, тем эффективнее диффузия. Уменьшение пути диффузии достигается за счёт уплощения клеток — пневмоцитов типа I и эндотелия капилляра, а также за счёт слияния базальных мембран эндотелия капилляра и пневмоцита типа I и формирования одной общей мембраны. Таким образом, аэрогематический барьер образуют: альвеолярные клетки типа I (0,2 мкм), общая базальная мембрана (0,1 мкм), уплощённая часть эндотелиальной клетки капилляра (0,2 мкм). В сумме это составляет около 0,5 мкм.
Респираторный обмен CO2. СО2 транспортируется кровью преимущественно в виде иона бикарбоната НСО3– в составе плазмы. В лёгких, где pО2 =
Интерстициальное пространство
Утолщённый участок стенки альвеолы, где не происходит слияния базальных мембран эндотелия капилляра и альвеолярного эпителия (так называемая «толстая сторона» альвеолярного капилляра) состоит из соединительной ткани и содержит коллагеновые и эластические волокна, создающие структурный каркас альвеолярной стенки, протеогликаны, фибробласты, липофибробласты и миофибробласты, тучные клетки, макрофаги, лимфоциты. Такие участки называют интерстициальным пространством (интерстицием).
Сурфактант
Общее количество сурфактанта в лёгких крайне невелико. На
Сурфактант регулярно инактивируется и конвертируется в мелкие поверхностно-неактивные агрегаты. Примерно 70–80% таких агрегатов захватывается пневмоцитами типа II, заключается в фаголизосомы, а затем катаболизируется или используется вновь. Альвеолярные макрофаги фагоцитируют остальной пул мелких агрегатов сурфактанта. В результате в макрофаге формируются и накапливаются окружённые мембраной пластинчатые агрегаты сурфактанта («пенистый» макрофаг). Одновременно происходит прогрессирующее накопление внеклеточного сурфактанта и клеточных обломков в альвеолярном пространстве, возможности для газообмена уменьшаются, развивается клинический синдром альвеолярного протеиноза.
Синтез и секреция сурфактанта пневмоцитами типа II — важное событие внутриутробного развития лёгких. Функции сурфактанта — снижение сил поверхностного натяжения альвеол и повышение эластичности лёгочной ткани. Сурфактант предотвращает спадение альвеол в конце выдоха и позволяет раскрываться альвеолам при пониженном внутригрудном давлении. Из фосфолипидов, входящих в состав сурфактанта, крайне важен лецитин. Отношение содержания лецитина к содержанию сфингомиелина в амниотической жидкости косвенно характеризует количество внутриальвеолярного сурфактанта и степень зрелости лёгких. Показатель 2:1 или выше — признак функциональной зрелости лёгких.
В течение последних двух месяцев пренатальной и нескольких лет постнатальной жизни число терминальных мешочков постоянно увеличивается. Зрелые альвеолы до рождения отсутствуют.
Лёгочный сурфактант — эмульсия фосфолипидов, белков и углеводов; 80% составляют глицерофосфолипиды, 10% — холестерин и 10% — белки Примерно половину белков сурфактанта составляют белки плазмы (преимущественно альбумины) и IgA. Сурфактант содержит ряд уникальных белков, способствующих адсорбции дипальмитоилфосфатидилхолина на границе двух фаз. Среди белков
Респираторный дистресс-синдром новорождённых развивается у недоношенных детей вследствие незрелости пневмоцитов типа II. Из-за недостаточного количества сурфактанта, выделяемого этими клетками на поверхность альвеол, последние оказываются нерасправленными (ателектаз). В результате развивается дыхательная недостаточность. Из-за ателектаза альвеол газообмен осуществляется через эпителий альвеолярных ходов и респираторных бронхиол, что ведёт к их повреждению.
Антигенпредставляющие клетки
Дендритные клетки и внутриэпителиальные дендроциты относятся к системе мононуклеарных фагоцитов, именно они являются главными Аг-представляющими клетками лёгкого. Дендритные клетки и внутриэпителиальные дендроциты наиболее многочисленны в верхних дыхательных путях и трахее. С уменьшением калибра бронхов число этих клеток уменьшается. Как Аг-представляющие, лёгочные внутриэпителиальные дендроциты и дендритные клетки. экспрессируют молекулы MHC I и MHC II.
Дендритные клетки
Дендритные клетки находятся в плевре, межальвеолярных перегородках, перибронхиальной соединительной ткани, в лимфоидной ткани бронхов. Дендритные клетки, дифференцируясь из моноцитов, довольно подвижны и могут мигрировать в межклеточном веществе соединительной ткани. В лёгких они появляются перед рождением. Важное свойство дендритных клеток — их способность стимулировать пролиферацию лимфоцитов. Дендритные клетки имеют удлинённую форму и многочисленные длинные отростки, неправильной формы ядро
и в изобилии — типичные клеточные органеллы. Фагосомы отсутствуют, поскольку дендритные клетки практически не обладают фагоцитарной активностью.
Внутриэпителиальные дендроциты
Внутриэпителиальные дендроциты присутствуют только в эпителии воздухоносных путей и отсутствуют в альвеолярном эпителии. Эти клетки дифференцируются из дендритных клеток., причём такая дифференцировка возможна только в присутствии эпителиальных клеток. Соединяясь цитоплазматическими отростками, проникающими между эпителиоцитами, внутриэпителиальные дендроциты образуют хорошо развитую внутриэпителиальную сеть. Внутриэпителиальные дендроциты морфологически сходны с дендритными клетками. Характерной чертой внутриэпителиальных дендроцитов является наличие в цитоплазме специфических электронно-плотных гранул в форме теннисной ракетки, имеющих пластинчатую структуру. Эти гранулы участвуют в захвате Аг клеткой для последующего его процессирования.
Макрофаги
Макрофаги составляют 10–15% всех клеток в альвеолярных перегородках. На поверхности макрофагов присутствует множество микроскладок Клетки формируют довольно длинные цитоплазматические отростки, которые позволяют макрофагам мигрировать через межальвеолярные поры. Находясь внутри альвеолы, макрофаг с помощью отростков может прикрепляться к поверхности альвеолы и захватывать частицы.
Альвеолярные макрофаги происходят из моноцитов крови или гистиоцитов соединительной ткани и перемещаются вдоль поверхности альвеол, захватывая инородные частицы, которые поступают с воздухом, разрушены эпителиальные клетки. Макрофаги, кроме защитной функции, также принимают участие в иммунных и репаративних реакциях.
Возобновление эпителиального выстелки альвеолы осуществляется за счет альвеолоцитов II типа.
Висцеральная плевра плотно срастается с легкими и отличается от париетальной количественным содержанием эластических волокон и гладких миоцитов.Оба листка плевры покриты мезотелием.