ЛИПИДЫ. КЛАССИФИКАЦИЯ. СТРУКТУРНЫЕ КОМПОНЕНТЫ ЛИПИДОВ. ФОСФОЛИПИДЫ
Липиды составляют большую и достаточно разнородную по химическому составу группу входящих в состав живых клеток органических веществ, растворимых в малополярных органических растворителях (эфире, бензоле, хлороформе и др.) и нерастворимых в воде. В общем виде они рассматриваются как производные жирных кислот.
Особенность строения липидов – присутствие в их молекулах одновременно полярных (гидрофильных) и неполярных (гидрофобных) структурных фрагментов, что придает липидам сродство как к воде, так и к неводной фазе. Липиды относятся к бифильным веществам, что позволяет им осуществлять свои функции на границе раздела фаз.
Классификация
Липиды делят на простые (двухкомпонентные), если продуктами их гидролиза являются спирты и карбоновые кислоты, и сложные (многокомпонентные), когда в результате их гидролиза кроме этого образуются и другие вещества, например фосфорная кислота и углеводы. К простым липидам относятся воски, жиры и масла, а также церамиды, к сложным – фосфолипиды, сфинголипиды и гликолипиды.
Общая классификация липидов
Структурные компоненты липидов
Все группы липидов имеют два обязательных структурных компонента – высшие карбоновые кислоты и спирты.
Высшие жирные кислоты (ВЖК). Многие высшие карбоновые кислоты были впервые выделены из жиров, поэтому они получили название жирных. Биологически важные жирные кислоты могут быть насыщенными и ненасыщенными. Их общие структурные признаки:
• являются монокарбоновыми;
• содержат неразветвленную углеродную цепь;
• включают четное число атомов углерода в цепи;
• имеют цис-конфигурацию двойных связей (если они присутствуют).
Основные насыщенные жирные кислоты липидов
В природных кислотах число атомов углерода колеблется от 4 до 22, но чаще встречаются кислоты с 16 или 18 атомами углерода. Ненасыщенные кислоты содержат одну или несколько двойных связей, имеющих цис-конфигурацию. Ближайшая к карбоксильной группе двойная связь обычно расположена между атомами С-9 и С-10. Если двойных связей несколько, то они отделены друг от друга метиленовой группой СН2.
Правилами ИЮПАК для ВЖК допускается использование их тривиальных названий.
В настоящее время также применяется собственная номенклатура ненасыщенных ВЖК. В ней концевой атом углерода, независимо от длины цепи, обозначается последней буквой греческого алфавита ω (омега). Отсчет положения двойных связей производится не как обычно от карбоксильной группы, а от метильной группы. Так, линоленовая кислота обозначается как 18:3 ω-3 (омега-3).
Сама линолевая кислота и ненасыщенные кислоты с иным числом атомов углерода, но с расположением двойных связей также у третьего атома углерода, считая от метильной группы, составляют семейство омега-3 ВЖК. Другие типы кислот образуют аналогичные семейства линолевой (омега-6) и олеиновой (омега-9) кислот. Для нормальной жизнедеятельности человека большое значение имеет правильный баланс липидов трех типов кислот: омега-3 (льняное масло, рыбий жир), омега-6 (подсолнечное, кукурузное масла) и омега-9 (оливковое масло) в рационе питания.
Из насыщенных кислот в липидах человеческого организма наиболее важны пальмитиновая С16 и стеариновая С18 (см. табл. 10.1), а из ненасыщенных – олеиновая С18:1, линолевая С18:2, линоленовая и арахидоновая С20:4.
Следует подчеркнуть роль полиненасыщенных линолевой и линоленовой кислот как соединений, незаменимых для человека («витамин F»). В организме они не синтезируются и должны поступать с пищей в количестве около 5 г в день. В природе эти кислоты содержатся в основном в растительных маслах. Они способствуют нормализации липидного профиля плазмы крови. Линетол, представляющий собой смесь этиловых эфиров высших жирных ненасыщенных кислот, используется в качестве гиполипидемического лекарственного средства растительного происхождения.
Основные ненасыщенные жирные кислоты липидов
* Включена для сравнения. ** Для цис-изомеров.
Спирты. В состав липидов могут входить:
• высшие одноатомные спирты;
• многоатомные спирты;
• аминоспирты.
В природных липидах наиболее часто встречаются насыщенные и реже ненасыщенные длинноцепочечные спирты (С16 и более) главным образом с четным числом атомов углерода. В качестве примера высших спиртов приведены цетиловый СH3(СН2)15ОН и мелиссиловый СН3(СН2)29ОН спирты, входящие в состав восков.
Многоатомные спирты в большинстве природных липидов представлены трехатомным спиртом глицерином. Встречаются другие многоатомные спирты, например двухатомные спирты этиленгликоль и пропандиол-1,2, а также миоинозит.
Наиболее важными аминоспиртами, входящими в состав природных липидов, являются 2-аминоэтанол (коламин), холин, относя- щийся также к α-аминокислотам серин и сфингозин.
Сфингозин – ненасыщенный длинноцепочечный двухатомный аминоспирт. Двойная связь в сфингозине имеет транс-конфигура- цию, а асимметрические атомы С-2 и С-3 – D-конфигурацию.
Спирты в липидах ацилированы высшими карбоновыми кислотами по соответствующим гидроксильным группам или аминогруппам. У глицерина и сфингозина один из спиртовых гидроксилов может быть этерифицирован замещенной фосфорной кислотой.
ПРОСТЫЕ ЛИПИДЫ
Воски
Воски – сложные эфиры высших жирных кислот и высших одноатомных спиртов.
Воски образуют защитную смазку на коже человека и животных и предохраняют растения от высыхания. Они применяются в фармацевтической и парфюмерной промышленности при изготовлении кремов и мазей. Примером служит цетиловый эфир пальмитиновой кислоты (цетин) – главный компонент спермацета. Спермацет выделяется из жира, содержащегося в полостях черепной коробки кашалотов. Другим примером является мелиссиловый эфир пальмитиновой кислоты – компонент пчелиного воска.
Жиры и масла
Жиры и масла – самая распространенная группа липидов. Большинство из них принадлежит к триацилглицеринам – полным эфирам глицерина и ВЖК, хотя также встречаются и принимают участие в обмене веществ моно- и диацилглицерины.
Жиры и масла (триацилглицерины) – сложные эфиры глицерина и высших жирных кислот.
В организме человека триацилглицерины играют роль структурного компонента клеток или запасного вещества («жировое депо»). Их энергетическая ценность примерно вдвое больше, чем белков или углеводов. Однако повышенный уровень триацилглицеринов в крови является одним из дополнительных факторов риска развития ишемической болезни сердца.
Твердые триацилглицерины называют жирами, жидкие – маслами. Простые триацилглицерины содержат остатки одинаковых кислот, смешанные – различных.
В составе триацилглицеринов животного происхождения обычно преобладают остатки насыщенных кислот. Такие триацилглицерины, как правило, твердые вещества. Напротив, растительные масла содержат в основном остатки ненасыщенных кислот и имеют жидкую консистенцию.
Ниже приведены примеры нейтральных триацилглицеринов и указаны их систематические и (в скобках) обычно употребляемые тривиальные названия, основанные на названиях входящих в их состав жирных кислот.
Церамиды
Церамиды – это N-ацилированные производные спирта сфингозина.
Церамиды в незначительных количествах присутствуют в тканях растений и животных. Гораздо чаще они входят в состав сложных липидов – сфингомиелинов, цереброзидов, ганглиозидов и др.
Сложные липиды
Некоторые сложные липиды трудно классифицировать однозначно, так как они содержат группировки, позволяющие отнести их одновременно к различным группам. Согласно общей классификации липидов сложные липиды обычно делят на три большие группы: фосфолипиды, сфинголипиды и гликолипиды.
|
Фосфолипиды
В группу фосфолипидов входят вещества, отщепляющие при гидролизе фосфорную кислоту, например глицерофосфолипиды и некоторые сфинголипиды. В целом фосфолипидам свойственно достаточно высокое содержание ненасыщенных кислот.
Классификация фосфолипидов
Глицерофосфолипиды. Эти соединения являются главными липидными компонентами клеточных мембран.
По химическому строению глицерофосфолипиды представляют собой производные l-глицеро-З-фосфата.
l-Глицеро-З-фосфат содержит асимметрический атом углерода и, следовательно, может существовать в виде двух стереоизомеров.
Природные глицерофосфолипиды имеют одинаковую конфигурацию, являясь производными l-глицеро-З-фосфата, образующегося в процессе метаболизма из фосфата дигидроксиацетона.
Фосфатиды. Среди глицерофосфолипидов наиболее распространены фосфатиды – сложноэфирные производные l-фосфатидовых кислот.
Фосфатидовые кислоты – это производные l-глицеро-З-фосфата, этерифицированные жирными кислотами по спиртовым гидроксильным группам.
Как правило, в природных фосфатидах в положении 1 глицериновой цепи находится остаток насыщенной, в положении 2 – ненасыщенной кислоты, а один из гидроксилов фосфорной кислоты этерифицирован многоатомным спиртом или аминоспиртом (X – остаток этого спирта). В организме (рН ~7,4) оставшийся свободным гидроксил фосфорной кислоты и другие ионогенные группировки в фосфатидах ионизированы.
Примерами фосфатидов могут служить соединения, в составе которых фосфатидовые кислоты этерифицированы по фосфатному гидроксилу соответствующими спиртами:
• фосфатидилсерины, этерифицирующий агент – серин;
• фосфатидилэтаноламины, этерифицирующий агент – 2-ами- ноэтанол (в биохимической литературе часто, но не вполне правильно называемый этаноламином);
• фосфатидилхолины, этерифицирующий агент – холин.
Эти этерифицирующие агенты взаимосвязаны между собой, поскольку фрагменты этаноламина и холина могут образовываться в ходе метаболизма из фрагмента серина путем декарбоксилирования и последующего метилирования при помощи S-аденозилметионина (SAM).
Ряд фосфатидов вместо аминосодержащего этерифицирующего агента содержит остатки многоатомных спиртов – глицерина, миоинозита и др. Приведенные ниже в качестве примера фосфатидилглицерины и фосфатидилинозиты относятся к кислым глицерофосфолипидам, поскольку в их структурах отсутствуют фрагменты аминоспиртов, придающие фосфатидилэтаноламинам и родственным соединениям нейтральный характер.
Плазмалогены. Менее распространены по сравнению со сложноэфирными глицерофосфолипидами липиды с простой эфирной связью, в частности плазмалогены. Они содержат остаток ненасыщенного спирта, связанный простой эфирной связью с атомом С-1 глицеро- 3-фосфата, как, например, плазмалогены с фрагментом этаноламина – L-фосфатидальэтаноламины. Плазмалогены составляют до 10% всех липидов ЦНС.
* Для удобства способ написания конфигурационной формулы остатка миоинозита в фосфатидилинозитах изменен по сравнению с приведенным выше.
Сфинголипиды
Сфинголипиды представляют собой структурные аналоги глицерофосфолипидов, в которых вместо глицерина используется сфинго- зин. Другим примером сфинголипидов служат рассмотренные выше церамиды.
Важную группу сфинголипидов составляют сфингомиелины, впервые обнаруженные в нервной ткани. В сфингомиелинах гидроксильная группа у С-1 церамида этерифицирована, как правило, фосфатом холина (реже фосфатом коламина), поэтому их можно отнести и к фосфолипидам.
|
Гликолипиды
Как можно судить по названию, соединения этой группы включают углеводные остатки (чаще D-галактозы, реже D-глюкозы) и не содержат остатка фосфорной кислоты. Типичные представители гликолипидов – цереброзиды и ганглиозиды – представляют собой сфингозинсодержащие липиды (поэтому их можно считать и сфинголипидами).
В цереброзидах остаток церамида связан с D-галактозой или D-глю- козой β-гликозидной связью. Цереброзиды (галактоцереброзиды, глюкоцереброзиды) входят в состав оболочек нервных клеток.
Ганглиозиды – богатые углеводами сложные липиды – впервые были выделены из серого вещества головного мозга. В структурном отношении ганглиозиды сходны с цереброзидами, отличаясь тем, что вместо моносахарида они содержат сложный олигосахарид, включающий по крайней мере один остаток V -ацетилнейраминовой.
Свойства липидов и их структурных компонентов
Особенностью сложных липидов является их бифильность, обусловленная неполярными гидрофобными и высокополярными ионизированными гидрофильными группировками. В фосфатидилхолинах, например, углеводородные радикалы жирных кислот образуют два неполярных «хвоста», а карбоксильная, фосфатная и холиновая группы – полярную часть.
На границе раздела фаз такие соединения действуют, как превосходные эмульгаторы. В составе клеточных мембран липид- ные компоненты обеспечивают высокое электрическое сопротивление мембраны, ее непроницаемость для ионов и полярных молекул и проницаемость для неполярных веществ. В частности, большинство анестезирующих препаратов хорошо растворяются в липидах, что позволяет им проникать через мембраны нервных клеток.
Жирные кислоты – слабые электролиты (pKa ~4,8). Они в малой степени диссоциированы в водных растворах. При pH < pKa преобладает неионизированная форма, при pH > pKa, т. е. в физиологических условиях, преобладает ионизированная форма RCOO–. Растворимые соли высших жирных кислот называются мылами. Натриевые соли высших жирных кислот твердые, калиевые – жидкие. Как соли слабых кислот и сильных оснований мыла частично гидролизуются в воде, их растворы имеют щелочную реакцию.
Природные ненасыщенные жирные кислоты, имеющие цис-конфигурацию двойной связи, обладают большим запасом внутренней энергии и, следовательно, по сравнению с транс-изомерами термодинамически менее стабильны. Их цис-транс-изомеризация легко проходит при нагревании, особенно в присутствии инициаторов радикальных реакций. В лабораторных условиях это превращение можно осуществить действием оксидов азота, образующихся при разложении азотной кислоты при нагревании.
Высшие жирные кислоты проявляют общие химические свойства карбоновых кислот. В частности, они легко образуют соответствующие функциональные производные. Жирные кислоты с двойными связями проявляют свойства ненасыщенных соединений – присоединяют по двойной связи водород, галогеноводороды и другие реагенты.
Гидролиз
С помощью реакции гидролиза устанавливают строение липидов, а также получают ценные продукты (мыла). Гидролиз – первая стадия утилизации и метаболизма пищевых жиров в организме.
Гидролиз триацилглицеринов осуществляют либо воздействием перегретого пара (в промышленности), либо нагреванием с водой в присутствии минеральных кислот или щелочей (омыление). В организме гидролиз липидов проходит под действием ферментов липаз. Некоторые примеры реакций гидролиза приведены ниже.
В плазмалогенах, как и в обычных виниловых эфирах, простая эфирная связь расщепляется в кислой, но не в щелочной среде.
Реакции присоединения
Липиды, содержащие в структуре остатки ненасыщенных кислот, присоединяют по двойным связям водород, галогены, галогеноводороды, воду в кислой среде. Иодное число – это мера ненасыщенности триацилглицеринов. Оно соответствует числу граммов иода, которое может присоединиться к 100 г вещества. Состав природных жиров и масел и их иодные числа варьируют в достаточно широких пределах. В качестве примера приводим взаимодействие 1-олеоил- дистеароилглицерина с иодом (иодное число этого триацилглицерина равно 30).
Каталитическое гидрирование (гидрогенизация) ненасыщенных растительных масел – важный промышленный процесс. В этом случае водород насыщает двойные связи и жидкие масла превращаются в твердые жиры.
Реакции окисления
Окислительные процессы с участием липидов и их структурных компонентов достаточно разнообразны. В частности, окисление кис- лородом воздуха ненасыщенных триацилглицеринов при хранении (автоокисление), сопровождаемое гидролизом, является частью процесса, известного как прогоркание масла.
Первичными продуктами взаимодействия липидов с молекулярным кислородом являются гидропероксиды, образующиеся в результате цепного свободнорадикального процесса.
Пероксидное окисление липидов – один из наиболее важных окислительных процессов в организме. Он является основной причиной повреждения клеточных мембран (например, при лучевой болезни).
Структурные фрагменты ненасыщенных высших жирных кислот в фосфолипидах служат мишенью для атаки активными формами кислорода (АФК).
При атаке, в частности, гидроксильным радикалом HO’, наиболее активным из АФК, молекулы липида LH происходит гомолитический разрыв связи С-Н в аллильном положении, как показано на примере модели пероксидного окисления липидов. Образующийся радикал аллильного типа L’ мгновенно реагирует с находящимся в среде окисления молекулярным кислородом с образованием липидпероксильного радикала LOO’. С этого момента начинается цепной каскад реакций пероксидации липидов, поскольку происходит постоянное образование аллильных липидных радикалов L’, возобнов- ляющих этот процесс.
Липидные пероксиды LOOH – неустойчивые соединения и могут спонтанно или при участии ионов металлов переменной валентности разлагаться с образованием липидоксильных радикалов LO’, способных инициировать дальнейшее окисление липидного субстрата. Такой лавинообразный процесс пероксидного окисления липидов представляет собой опасность разрушения мембранных структур клеток.
Промежуточно образующийся радикал аллильного типа имеет мезомерное строение и может далее подвергаться превращениям по двум направлениям, приводящим к промежуточным гидропероксидам. Гидропероксиды нестабильны и уже при обычной температуре распадаются с образованием альдегидов, которые далее окисляются в кислоты – конечные продукты реакции. В результате получаются в общем случае две монокарбоновые и две дикарбоновые кислоты с более короткими углеродными цепями.
Ненасыщенные кислоты и липиды с остатками ненасыщенных кислот в мягких условиях окисляются водным раствором перманганата калия, образуя гликоли, а в более жестких (с разрывом углеродуглеродных связей) – соответствующие кислоты.
Основную массу липидов в организме составляют жиры – триацилглицеролы, служащие формой депонирования энергии. Жиры располагаются преимущественно в подкожной жировой ткани и выполняют также функции теплоизоляционной и механической защиты.
Фосфолипиды – большой класс липидов, получивший своё название из-за остатка фосфорной кислоты, придающего им свойства амфифильности. Благодаря этому свойству фосфолипиды формируют бислойную структуру мембран, в которую погружены белки. Клетки или отделы клеток, окружённые мембранами, отличаются по составу и набору молекул от окружающей среды, поэтому химические процессы в клетке разделены и ориентированы в пространстве, что необходимо для регуляции метаболизма.
Стероиды, представленные в животном мире холестеролом и его производными, выполняют разнообразные функции. Холестерол – важный компонент мембран и регулятор свойств гидрофобного слоя. Производные холестерола (жёлчные кислоты) необходимы для переваривания жиров. Стероидные гормоны, синтезируемые из холестерола, участвуют в регуляции энергетического, водно-солевого обменов, половых функций. Кроме стероидных гормонов, многие производные липидов выполняют регуляторные функции и действуют, как и гормоны, в очень низких концентрациях. Например, тромбоци-тактивирующий фактор – фосфолипид особой структуры – оказывает сильное влияние на агрегацию тромбоцитов в концентрации 10–
В тканях человека количество разных классов липидов существенно различается. В жировой ткани жиры составляют до 75% сухого веса. В нервной ткани липидов содержится до 50% сухого веса, основные из них фосфолипиды и сфингомиелины (30%), холестерол (10%), ган-глиозиды и цереброзиды (7%). В печени общее количество липидов в норме не превышает 10-13%.
Нарушения обмена липидов приводят к развитию многих заболеваний, но среди людей наиболее распространены два из них – ожирение и атеросклероз.
I. СТРУКТУРА, КЛАССИФИКАЦИЯ И СВОЙСТВА ОСНОВНЫХ ЛИПИДОВ ОРГАНИЗМА ЧЕЛОВЕКА
Липиды разных классов существенно отличаются по структуре и функциям. Большинство липидов имеют в своём составе жирные кислоты, связанные сложноэфирной связью c глицеролом, холестеролом или амидной связью с аминоспиртом сфингозином.
Структура, состав и свойства жирных кислот и ацилглицеролов
Жирные кислоты в организме человека имеют чётное число атомов углерода, что связано с особенностями их биосинтеза, при котором к углеводородному радикалу жирной кислоты последовательно добавляются двухуглеродные фрагменты.
Жирные кислоты – структурные компоненты различных липидов. В составе триацилглице-ролов жирные кислоты выполняют функцию депонирования энергии, так как их радикалы содержат богатые энергией СН2-группы. При окислении СН-связей энергии выделяется больше, чем при окислении углеводов, в которых атомы углерода уже частично окислены (-НСОН-). В составе фосфолипидов и сфинго-липидов жирные кислоты образуют внутренний гидрофобный слой мембран, определяя его свойства. Жиры и фосфолипиды организма при нормальной температуре тела имеют жидкую консистенцию, так как количество ненасыщенных жирных кислот преобладает над насыщенными. В фосфолипидах мембран ненасыщенных кислот может быть до 80-85%, а в составе жиров подкожного жира – до 60%.
В свободном, неэтерифицированном состоянии жирные кислоты в организме содержатся в небольшом количестве, например в крови, где они транспортируются в комплексе с белком альбумином.
Жирные кислоты липидов человека представляют собой углеводородную неразветвлён-ную цепь, на одном конце которой находится карбоксильная группа, а на другом – метильная группа (ω-углеродный атом). Большинство жирных кислот в организме содержат чётное число атомов углерода – от 16 до 20. Жирные кислоты, не содержащие двойных связей, называют насыщенными. Основной насыщенной жирной кислотой в липидах человека является пальмитиновая (до 30-35%). Жирные кислоты, содержащие двойные связи, называют ненасыщенными. Ненасыщенные жирные кислоты представлены моноеновыми (с одной двойной связью) и полиеновыми (с двумя и большим числом двойных связей). Если в составе жирной кислоты содержатся две и более двойных связей, то они располагаются через СН2-группу. Имеется несколько способов изображения структуры жирных кислот. При обозначении жирной кислоты цифровым символом (табл., вторая графа) общее количество атомов углерода представлено цифрой до двоеточия, после двоеточия указывают число двойных связей. Позиция двойной связи может быть указана и другим способом – по расположению первой двойной связи, считая от метильного ω-атома углерода жирной кислоты. Например, линолевая кислота может быть обозначена как C18:2Δ9,12 или С18:2ω-6. По положению первой двойной связи от метильного углерода полиеновые жирные кислоты делят на семейства ω-3 и ω-6.
Двойные связи в жирных кислотах в организме человека имеют цис-конфигурацию. Это означает, что ацильные фрагменты находятся по одну сторону двойной связи. Цис-конфигурация двойной связи делает алифатическую цепь жирной кислоты изогнутой, что нарушает упорядоченное расположение насыщенных радикалов жирных кислот в фосфолипидах мембран (рис.) и снижает температуру плавления. Чем больше двойных связей в жирных кислотах липидов, тем ниже температура их плавления.
Рис. Конфигурации радикалов жирных кислот. А – излом радикала жирной кислоты при двойной связи в цис-конфигурации; Б – нарушение упорядоченного расположения радикалов насыщенных жирных кислот в гидрофобном слое мембран ненасыщенной кислотой с цис-конфигурацией двойной связи.
Жирные кислоты с транс-конфигурацией двойной связи могут поступать в организм с пищей, например в составе маргарина. В этих кислотах отсутствует излом, характерный для цис-связи, поэтому жиры, содержащие такие ненасыщенные кислоты, имеют более высокую температуру плавления, т.е. более твёрдые по консистенции.
Большинство жирных кислот синтезируется в организме человека, однако полиеновые кислоты (линолевая и α-линоленовая) не синтезируются и должны поступать с пищей. Эти жирные кислоты называют незаменимыми, или эссенциальными. Основные источники полиеновых жирных кислот для человека – жидкие растительные масла и рыбий жир, в котором содержится много кислот семейства ω-3.
Ацилглицеролы – сложные эфиры трёхатомно-го спирта глицерола и жирных кислот. Глицерол может быть связан с одной, двумя или тремя жирными кислотами, соответственно образуя моно-, диили триацилглицеролы (МАГ, ДАГ, ТАГ). Основную массу липидов в организме человека составляют триацилглицеролы – жиры. У человека с массой тела
Моно- и диацилглицеролы образуются на промежуточных этапах распада и синтеза триацил-глицеролов. Атомы углерода в глицероле по-разному ориентированы в пространстве (рис.), поэтому ферменты различают их и специфически присоединяют жирные кислоты у первого, второго и третьего атомов углерода.
Рис. Пространственное расположение углеродных атомов глицерола.
Номенклатура и состав природных триацил-глицеролов. В молекуле природного жира содержатся разные жирные кислоты. Как правило, в позициях 1 и 3 находятся более насыщенные жирные кислоты, а во второй позиции – поли-еновая кислота. В названии триацилтлицерола перечисляются названия радикалов жирных кислот, начиная с первого углеродного атома глицерола, например пальмитоил-линоленоил-олеоилглицерол.
Жиры, содержащие преимущественно на-сы-щенные кислоты, являются твёрдыми (говяжий, бараний жиры), а содержащие большое количество ненасыщенных кислот – жидкими. Жидкие жиры или масла обычно имеют растительное происхождение.
Из животных пищевых жиров наиболее насыщен бараний жир, который практически не содержит незаменимых кислот. Ценными пищевыми жирами являются рыбий жир и растительные масла, содержащие незаменимые жирные кислоты. В организме рыб полиеновые жирные кислоты ω-3 и ω-6 также не синтезируются, рыбы получают их с пищей (водоросли, планктон).
СТРУКТУРА И КЛАССИФИКАЦИЯ ФОСФОЛИПИДОВ И СФИНГОЛИПИДОВ
Фосфолипиды – разнообразная группа липидов, содержащих в своём составе остаток фосфорной кислоты. Фосфолипиды делят на глицерофосфолипиды, основу которых составляет трёхатомный спирт глицерол, и сфинго-фосфолипиды – производные аминоспирта сфингозина. Фосфолипиды имеют амфифильные свойства, так как содержат алифатические радикалы жирных кислот и различные полярные группы. Благодаря своим свойствам фосфолипиды не только являются основой всех клеточных мембран, но и выполняют другие функции: образуют поверхностный гидрофильный слой липопротеинов крови, выстилают поверхность альвеол, предотвращая слипание стенок во время выдоха. Некоторые фосфо-липиды участвуют в передаче гормонального сигнала в клетки. Сфингомиелины являются фосфолипидами, формирующими структуру миелиновых оболочек и других мембранных структур нервных клеток.
Глицерофосфолипиды. Структурная основа глицерофосфолипидов – глицерол. Глицеро-фосфолипиды (ранее используемые названия – фосфоглицериды или фосфоацилглицеролы) представляют собой молекулы, в которых две жирные кислоты связаны сложноэфирной связью с глицеролом в первой и второй позициях; в третьей позиции находится остаток фосфорной кислоты, к которому, в свою очередь, могут быть присоединены различные заместители, чаще всего аминоспирты (табл. рис.).
Рис. Основные глицерофосфолипиды в организме человека.
Если в третьем положении имеется только фосфорная кислота, то глицерофосфолипид называется фосфатидной кислотой. Её остаток называют «фосфатидил»; он входит в название остальных глицерофосфолипидов, после которого указывают название заместителя атома водорода в фосфорной кислоте, например фосфатидилэта-ноламин, фосфатидилхолин и т.д.
Фосфатидная кислота в свободном состоянии в организме содержится в небольшом количестве, но является промежуточным продуктом на пути синтеза как триацилглицеролов, так и глицерофосфолипидов. У глицерофосфолипидов, как и у триацилглицеролов, во второй позиции находятся преимущественно полиеновые кислоты; в молекуле фосфатидилхолина, входящего в структуру мембран, это чаще всего арахидоно-вая кислота. Жирные кислоты фосфолипидов мембран отличаются от других липидов человека преобладанием полиеновых кислот (до 80-85%), что обеспечивает жидкое состояние гидрофобного слоя, необходимое для функционирования белков, входящих в структуру мембран.
Плазмалогены. Плазмалогены – фосфолипиды, у которых в первом положении глицерола находится не жирная кислота, а остаток спирта с длинной алифатической цепью, связанный простой эфирной связью.
Характерный признак плазмалогенов – двойная связь между первым и вторым атомами углерода в алкильной группе (рис.).
Рис. Плазмалогены.
Плазмалогены бывают 3 видов: фосфатидальэтаноламины, фосфатидальхолины и фосфатидальсерины. Плазмалогены составляют до 10% фос-фолипидов мембран нервной ткани; особенно много их в миелиновых оболочках нервных клеток.
Некоторые типы плазмалогенов вызывают очень сильные биологические эффекты, действуя как медиаторы. Например, тромбоцитак-тивирующий фактор (ТАФ) стимулирует агрегацию тромбоцитов. ТАФ отличается от других плазмалогенов отсутствием двойной связи в алкильном радикале и наличием ацетильной группы во втором положении глицерола вместо жирной кислоты.
ТАФ выделяется из фагоцитирующих клеток крови в ответ на раздражение и стимулирует агрегацию тромбоцитов, участвуя таким образом в свёртывании крови. Этот фактор обусловливает также развитие некоторых признаков воспаления и аллергических реакций.
Сфинголипиды
Аминоспирт сфингозин, состоящий из 18 атомов углерода, содержит гидроксильные группы и аминогруппу. Сфингозин образует большую группу липидов, в которых жирная кислота связана с ним через аминогруппу. Продукт взаимодействия сфингозина и жирной кислоты называют «церамид» (рис.).
Рис.. Производные сфингозина: церамид и сфингомиелин.
В церамидах жирные кислоты связаны необычной (амидной) связью, а гидроксильные группы способны взаимодействовать с другими радикалами. Церамиды отличаются радикалами жирных кислот, входящих в их состав. Обычно это жирные кислоты с большой длиной цепи – от 18 до 26 атомов углерода.
Сфингомиелины. В результате присоединения к ОН-группе церамида фосфорной кислоты, связанной с холином, образуется сфингомиелин. Сфингомиелины – основные компоненты миелина и мембран клеток мозга и нервной ткани. Сфингомиелины, как и глицеро-фосфолипиды, имеют амфифильные свойства, обусловленные, с одной стороны, радикалом жирной кислоты и алифатической цепью самого сфингозина, а с другой – полярной областью фосфорилхолина.
Гликолипиды. Церамиды – основа большой группы липидов – гликолипидов. Водород в гидроксильной группе церамида может быть замещён на разные углеводные фрагменты, что определяет принадлежность гликолипида к определённому классу. Гликоли-пиды находятся в основном в мембранах клеток нервной ткани. Названия «цереброзиды» и «ганглиозиды» указывают на ткани, откуда они впервые были выделены.
Цереброзиды. Цереброзиды имеют в своём составе моносахариды. Наиболее распространены цереброзиды, имеющие в своём составе галактозу (галактоцереброзид), реже – глюкозу (глюкоцереброзид). Цереброзиды содержат необычные жирные кислоты, например, галакто-цереброзид френозин содержит цереброновую кислоту – 2-гидроксикислоту, содержащую 24 атома углерода (рис.).
Рис. Цереброзиды.
Глобозиды. Глобозиды отличаются от церебро-зидов тем, что имеют в своём составе несколько углеводных остатков, связанных с церамидом:
церамид-глюкоза-галактоза-галактоза-N-ацети-лгалактоза
Цереброзиды и глобозиды относят к нейтральным сфинголипидам, так как они не содержат заряженных групп.
Сульфатиды. Гидроксил у третьего углеродного атома моносахарида, входящего в состав цереброзида, может связывать остаток серной кислоты, т.е. сульфатироваться. В этом случае образуются сульфатиды, обладающие свойствами кислот и поэтому называемые кислыми сфинголипидами (рис.).
Рис. Сульфатиды.
При физиологических значениях рН сульфатированный углеводный остаток имеет отрицательный заряд. Около 25% цереброзидов мозга представляют собой сульфатированные производные. Сульфатиды в значительных количествах находят в белом веществе мозга.
Ганглиозиды – наиболее сложные по составу липиды. Они содержат несколько углеводных остатков, среди которых присутствует N-ацетил- нейраминовая кислота. Нейраминовая кислота представляет собой углевод, состоящий из 9 атомов углерода и входящий в группу сиаловых кислот.
Строение ганглиозида Gm2 может быть представлено следующей схемой:
Номенклатура ганглиозидов. Ганглиозиды обозначают буквой G, например Gm2. Нижний индекс в виде букв M, D, T и Q означает, что молекула ганглиозида содержит 1, 2, 3 или 4 остатка сиаловых кислот. Цифра у нижнего индекса обозначает специфическую последовательность углеводов в ганглиозиде.
Ганглиозиды содержатся в основном в ганг-лиозных клетках нервной ткани, откуда они и получили своё название. Однако ганглиозиды находятся и в плазматических мембранах многих клеток – эритроцитов, гепатоцитов, клеток селезёнки и других органов. Главная роль ганг-лиозидов определяется их участием в осуществлении межклеточных контактов. Некоторые ганглиозиды служат своеобразными рецепторами для ряда бактериальных токсинов.
Стероиды
Стероиды – производные восстановленных конденсированных циклических систем – цик-лопентанпергидрофенантренов.
В организме человека основной стероид – холестерол, остальные стероиды – его производные. Растения, грибы и дрожжи не синтезируют холестерол, но образуют разнообразные фитостеролы и микостеролы, не усваиваемые организмом человека. Бактерии не способны синтезировать стероиды.
Холестерол входит в состав мембран и влияет на структуру бислоя, увеличивая её жёсткость. Из холестерола синтезируются жёлчные кислоты, стероидные гормоны и витамин D3. Нарушение обмена холестерола приводит к развитию атеросклероза.
Холестерол представляет собой молекулу, содержащую 4 конденсированных кольца, обозначаемые латинскими буквами А, B, C, D, разветвлённую боковую цепь из 8 углеродных атомов в положении 17, 2 «ангулярные» метальные группы (18 и 19) и гидроксильную группу в положении 3. Наличие гидроксильной группы позволяет относить холестерол к спиртам, поэтому его правильное химическое название «холестерол», однако в медицинской литературе часто используют термин «холестерин».
Присоединение жирных кислот сложноэфир-ной связью к гидроксильной группе приводит к образованию эфиров холестерола (рис.).
Рис. Холестерол и его эфиры.
В неэтерифицированной форме холестерол входит в состав мембран различных клеток. Гидроксильная группа холестерола обращена к водному слою, а жёсткая гидрофобная часть молекулы погружена во внутренний гидрофобный слой мембраны.
В крови 2/3 холестерола находится в этерифи-цированной форме и 1/3 – в виде свобідного холестерола. Эфиры холестерола служат формой его депонирования в некоторых клетках (например, печени, коры надпочечников, половых желёз). Из этих депо холестерол используется для синтеза жёлчных кислот и стероидных гормонов.
Жёлчные кислоты. Жёлчные кислоты обладают поверхностно-активными свойствами и участвуют в переваривании жиров, эмульгируя их и делая доступными для действия панкреатической липазы.
Жёлчные кислоты – производные холестерола с пятиуглеродной боковой цепью в положении 17, которая заканчивается карбоксильной группой. В организме человека синтезируются две жёлчные кислоты: холевая, которая содержит три гидроксильные группы в положениях 3, 7, 12, и хенодезоксихолевая, содержащая две гидроксильные группы в положениях 3 и 7. Так как карбоксильные группы этих жёлчных кислот имеют рК~6, они не полностью диссоциированы при физиологических значениях рН в кишечнике и не являются эффективными эмульгаторами. В печени эмульгирующие свойства жёлчных кислот увеличиваются за счёт реакции конъюгации, в которой к карбоксильной группе жёлчных кислот присоединяются таурин или глицин, полностью ионизированные при рН кишечного сока. Эти производные – конъюгированные жёлчные кислоты – находятся в ионизированной форме и поэтому называются солями жёлчных кислот. Именно они служат главными эмульгаторами жиров в кишечнике.
Переваривание и всасывание пищевых липидов
С пищей в организм ежедневно поступает от 80 до
ЭМУЛЬГИРОВАНИЕ ЖИРОВ
Жиры составляют до 90% липидов, поступающих с пищей. Переваривание жиров происходит в тонком кишечнике, однако уже в желудке небольшая часть жиров гидролизуется под действием «липазы языка». Этот фермент синтезируется железами на дорсальной поверхности языка и относительно устойчив при кислых значениях рН желудочного сока. Поэтому он действует в течение 1-2 ч на жиры пищи в желудке. Однако вклад этой липазы в переваривание жиров у взрослых людей незначителен. Основной процесс переваривания происходит в тонкой кишке.
Так как жиры – нерастворимые в воде соединения, то они могут подвергаться действию ферментов, растворённых в воде только на границе раздела фаз вода/жир. Поэтому действию панкреатической липазы, гидролизующей жиры, предшествует эмульгирование жиров. Эмульгирование (смешивание жира с водой) происходит в тонком кишечнике под действием солей жёлчных кислот (рис.).
Рис. Этапы поступления экзогенных жиров в организм.
Жёлчные кислоты синтезируются в печени из холестерола и секретируются в жёлчный пузырь. Содержимое жёлчного пузыря – жёлчь. Это вязкая жёлто-зелёная жидкость, содержащая главным образом жёлчные кислоты; в небольшом количестве имеются фосфолипиды и холестерол. Жёлчные кислоты представляют собой в основном конъюгированные жёлчные кислоты: таурохолевую, гликохолевую и другие (рис.).
Рис. Жёлчные кислоты.
После приёма жирной пищи жёлчный пузырь сокращается и жёлчь изливается в просвет двенадцатиперстной кишки. Жёлчные кислоты действуют как детергенты, располагаясь на поверхности капель жира и снижая поверхностное натяжение. В результате крупные капли жира распадаются на множество мелких, т.е. происходит эмульгирование жира. Эмульгирование приводит к увеличению площади поверхности раздела фаз жир/вода, что ускоряет гидролиз жира панкреатической липазой. Эмульгированию способствует и перистальтика кишечника.
ОБЩАЯ ХАРАКТЕРИСТИКА ЛИПОПРОТЕИНОВ
Все типы липопротеинов имеют сходное строение – гидрофобное ядро и гидрофильный слой на поверхности .
Гидрофильный слой образован белками, которые называют апопротеинами, и амфифильными молекулами липидов – фосфолипидами и холестеролом. Гидрофильные группы этих молекул обращены к водной фазе, а гидрофобные части – к гидрофобному ядру липопротеина, в котором находятся транспортируемые липиды. Некоторые апопротеины интегральные и не могут быть отделены от липопротеина, а другие могут свободно переноситься от одного типа липоп-ротеина к другому. Апопротеины выполняют несколько функций:
• формируют структуру липопротеинов;
• взаимодействуют с рецепторами на поверхности клеток и таким образом определяют, какими тканями будет захватываться данный тип липопротеинов;
• служат ферментами или активаторами ферментов, действующих на липопротеины.
В организме синтезируются следующие типы липопротеинов: хиломик-роны (ХМ), липопротеины очень низкой плотности (ЛПОНП), липопротеины промежуточной плотности (ЛППП), липопротеины низкой плотности (ЛПНП) и липопротеины высокой плотности (ЛПВП).
Каждый из типов ЛП образуется в разных тканях и транспортирует определённые липиды. Например, ХМ транспортируют экзогенные (пищевые жиры) из кишечника в ткани, поэтому триацилглицеролы составляют до 85% массы этих частиц.
ЛП хорошо растворимы в крови, не коалес-цируют, так как имеют небольшой размер и отрицательный заряд на поверхности. Некоторые ЛП легко проходят через стенки капилляров кровеносных сосудов и доставляют липиды к клеткам.
Большой размер ХМ не позволяет им проникать через стенки капилляров, поэтому из клеток кишечника они сначала попадают в лимфатическую систему и потом через главный грудной проток вливаются в кровь вместе с лимфой.
Метод ультрацентрифугирования позволяет разделить ЛП, используя их различие в плотности, которая зависит от соотношения количества липидов и белков в частице. Так как жир имеет меньшую, чем вода, плотность, то ХМ, содержащие более 85% жиров, располагаются на поверхности сыворотки крови, а ЛПВП, содержащие наибольшее количество белков, имеют самую большую плотность и при центрифугировании располагаются в нижней части центрифужной пробирки. Так как ЛП впервые были выделены из сыворотки крови методом ультрацентрифугирования, то в названии указывают плотность частиц. Однако метод ультрацентрифугирования непригоден для широкого использования, поэтому в клинических лабораториях обычно применяют метод электрофореза. Скорость движения частиц при электрофорезе зависит от их заряда и размера. Заряд, в свою очередь, зависит от количества белков на поверхности ЛП. При электрофорезе в геле все типы ЛП движутся к положительному полюсу; ближе к старту располагаются ХМ, а ЛПВП, имеющие наибольшее количество белков и наименьший размер, удаляются от старта дальше других частиц.
Состав ЛП крови значительно изменяется в течение суток. В абсорбтивный период (особенно при употреблении жирной пищи) в крови появляются ХМ. Богатая углеводами пища способствует образованию ЛПОНП, так как эти ЛП транспортируют жиры, синтезированные
Ацетил-КоА как предшественник липидов
Различные группы липидов, присутствующие в животных и растительных тканях тесно связаны биогенетически: все они произошли от одного предшественника — ацетилкофермента А [ацетил-КоА (ацетилCoA)], представляющего собой активированную форму уксусной кислоты.
1. От ацетил-КоА основной путь биосинтеза ведет к активированным жирным кислотам (подробнее см. рис. 171), из которых затем синтезируются жиры, фосфолипиды, гликолипиды и другие производные жирных кислот. В количественном отношении этот путь является главным в животных и в большинстве растительных тканей.
2. Второй путь биосинтеза ведет от ацетил-КоА к 3-изопентенилдифосфату («активному изопрену»), главному структурному элементу изопреноидов. Биосинтез этого соединения обсуждается в связи с биогенезом холестерина.
Основным биогенетическим предшественником всех изопреноидов является изопрен (2-метилбутадиен-1,3) — разветвленный ненасыщенный углеводород из пяти углеродных атомов. В организмах животных и в растениях активный изопрен, 5-изопентенилдифосфат, служит исходным соединением для биосинтеза линейных и циклических олигомеров и полимеров. У приведенных на схеме произвольно выбранных представителей этого большого класса соединений внизу (l = ) указано число содержащихся в них изопреновых звеньев.
От активного изопрена главный путь биосинтеза ведет через димеризацию к активному гераниолу (l = 2) (геранилдифосфату), а затем к активному фарнезолу (l = 3) (фарнезилдифосфату). Здесь основной путь биосинтеза терпенов разветвляется. Последовательное наращивание цепи фарнезола изопреновыми звеньями (по схеме «голова к хвосту») приводит к полимерам с возрастающим количествам изопреновых звеньев: фитолу (l = 4), долихолу (l=14-24), наконец, к каучуку (l = 700-5000). Альтернативный путь — конденсация двух молекул фарнезола по схеме «голова к голове» — приводит к сквалену (l = 6), который может подвергаться окислительной циклизации с образованием холестерина (l = 6) и других стероидов.
Способность синтезировать специфические изопреноиды свойственна лишь отдельным видам животных и растений. Так, натуральный каучук синтезируется лишь немногими видами растений, главным образом каучуконосом гевея бразильская (Неvеа brasiliensis). Некоторые изопреноиды играют важную роль в метаболизме, но не могут синтезироваться в организме человека. К этой группе относятся витамины A, D, E и К. Из-за структурного и функционального сродства со стероидными гормонами витамин D относят к гормонам.
Метаболизм изопрена в растениях весьма многообразен. В растениях на основе изопрена синтезируется множестве душистых веществ и эфирных масел. В качестве примера здесь приведены терпены ментол (l = 2), камфора (l = 2) и цитронеллол (l = 2). Соединения из трех изопреновых звеньев (l = 3) называются сесквитерпенами, а стероиды (l = 6) — тритерпенами.
Наиболее важной группой изопреноидов являются соединения, обладающие гормональными и сигнальными функциями. К этой группе относятся стероидные гормоны (l = 6), ретиноевая кислота (l = 4) позвоночных, а также ювенильные гормоны (l = 3) насекомых. К классу изопреноидов относятся также некоторые растительные гормоны, например цитокинины, абсцизовая кислота и брассиностероиды.
Полиизопреновые цепи иногда выступают в роли липидного «якоря», с помощью которого молекулы белков или других соединений удерживаются на мембране. Группа коферментов с изопреноидным якорем включает убихинон (кофермент Q; l = 6-10), пластохинон (l = 9) и менахинон (витамин K2, l = 4-6). В молекуле хлорофилла также имеется липидный якорь в виде остатка фитила (l = 4). Некоторые белки также удерживаются на мембране благодаря наличию изопренильного фрагмента (см. с. 232).
Иногда изопреновая группа используется для химической модификации соединений других классов. В качестве примера можно привести модифицированный нуклеотид N6-изопентенил-АМФ (N6-изопентенил-АМР), входящий в состав некоторых тРНК.
Стероиды: Базовая структура стероидов
В основе молекул стероидов лежит структура полициклического насыщенного углеводорода эстрана, построенного из четырех конденсированных углеродных колец. Многие стероиды содержат боковые углеводородные цепи, как, например, приведенный на схеме холестан, являющийся основой многих стеринов (стероидных спиртов).
Пространственная структура стероидов
Согласно принятой номенклатуре, четыре кольца в молекуле стероидов обозначаются заглавными буквами латинского алфавита А, B, С, D. Благодаря тетраэдрической ориентации валентностей атома углерода структура эстрана в целом не плоская, а складчатая. Три возможные конформации циклогексана носят названия «кресло», «ванна» и «скрученная ванна» (твист-конформация, на схеме не приведена). Наиболее часто встречаются конформации кресла и ванны. Пятичленные кольца часто принимают конформацию «конверта». Отдельные алифатические кольца легко переходят из одной конформации в другую даже при комнатной температуре. В молекулах стероидов такие переходы невозможны.
Заместители в стероидном коре могут быть расположены в плоскости кольца (е — экваториально) или почти перпендикулярно плоскости (а — аксиально). Если в пространственной модели заместители обращены к наблюдателю (в двумерном изображении над плоскостью), то такие связи обозначают сплошной линией (β-положение). Если заместители ориентированы от наблюдателя (в двумерном изображении — под плоскостью), то такие связи изображают пунктирной линией (α-положение). Так называемые ангулярные метильные группы при С-10 и C-13 всегда находятся в β-положении.
Соседние кольца А и В могут быть расположены в одной плоскости (транс-сочленение; 2) или располагаться под углом друг к другу (цис-сочленение; 1). Форма сочленения зависит от положения заместителя (H) при общем углеродном атоме (C-5), который может занимать цис- или транс-положение по отношению к ангулярной метильной группе при С-10. Заместители в местах пересечения отдельных колец обычно находятся в транс-положении. По форме стероидный кор напоминает плоский диск. Исключение составляют изогнутые под углом вследствие цис-сочленения колец А и В молекулы экдистероидов и желчных кислот, а также сердечных гликозидов и токсинов жаб.
Реальное представление о пространственной структуре молекул стероидов дает вандерваальсова модель холестерина (3). Четыре кольца образуют жесткий каркас, к которому присоединена относительно гибкая боковая цепь.
Стероиды — сравнительно неполярные (гидрофобные) соединения. Благодаря отдельным полярным группировкам, гидрокси- или оксогруппе, они могут проявлять амфифильные свойства. Больше всего эти свойства выражены у солей желчных кислот.
Тонкослойная хроматография (TCX) — эффективный, преимущественно аналитический, метод быстрого разделения липидов и других низкомолекулярных веществ (аминокислот, нуклеотидов, витаминов, лекарственных веществ). Исследуемый образец наносят на тонкий слой силикагеля, закрепленный на пластинке из стекла, фольги или пластика (1). Пластинку поменяют в хроматографическую камеру с небольшим количеством растворителя. Под действием капиллярных сил фронт растворителя продвигается по пластинке, увлекая вещества, присутствующие в образце (2). Скорость продвижения разделяемых веществ зависит от распределения между неподвижной и подвижной фазами, т.е. между гидрофильным силикагелем и неполярным растворителем. Хроматографический процесс заканчивают в тот момент, когда растворитель достигает верхнего края пластинки. Слой силикагеля высушивают, анализируемые вещества проявляют на пластинке с помощью подходящих красителей или в УФ-свете (3). Подвижность вещества в данной системе выражают в виде величины Rf. Сравнивая полученные значения Rf с подвижностью контрольных веществ (свидетелей), идентифицируют соединения, присутствующие в образце.
ОФ-ТСХ (обращенно-фазовая TCX) называется хроматография на неполярном (гидрофобном) сорбенте с помощью полярного растворителя.
Три наиболее важные группы стероидов составляют cтерины, желчные кислоты и cтероидные гормоны. Кроме того, к стероидам относят соединения растительного происхождения, обладающие ценными фармакологическими свойствами: стероидные алкалоиды, гликозиды дигиталиса (сердечные гликозиды) и стероидные сапонины.
Стеринами называются cтероидные спирты. Все стерины содержат β-гидроксильную группу при С-3 и одну или несколько двойных связей в кольце В и боковой цепи. В молекулах стеринов отсутствуют карбоксильные и карбонильные группы.
В организме животных наиболее важным стерином является холестерин. В растениях и микроорганизмах содержится множество родственных соединений, например эргостерин, β-ситостерин, стигмастерин.
Холестерин присутствует во всех животных тканях, особенно в нервных тканях. Он является важнейшей составной частью клеточных мембран, где регулирует их текучесть. Запасной и транспортной формами холестерина служат его эфиры с жирными кислотами. Наряду с другими липидами холестерин и его эфиры присутствуют в составе липопротеидных комплексов плазмы крови. Холестерин входит в состав желчи и многих желчных камней. Вопросы биосинтеза, метаболизма и транспорта холестерина обсуждаются в других разделах.
Нарушение обмена холестерина играет важную роль в развитии атеросклероза, заболевания связанного с отложением холестерина (бляшек) на стенках кровеносных сосудов (кальцинирование) из-за повышенного уровня холестерина в крови. Для предупреждения атеросклероза важно, чтобы в пищевом рационе прeoблaдaли продукты растительного происхождения, для которых характерно низкое содержание холестерина. Напротив, пищевые продукты животного происхождения содержат много холестерина, особенно яичный желток, мясо, печень, мозги.
Из холестерина в печени образуются желчные кислоты. По химическому строению эти соединения близки к холестерину. Для желчных кислот характерно наличие укороченной разветвленной боковой цепи с карбоксильной группой на конце. Двойная связь в кольце В отсутствует, а кольца А и В сочленены в цис-положении. Стероидный кор содержит в положениях 3, 7 и 12 от одной до трех β-гидроксильных групп.
Желчные кислоты обеспечивают растворимость холестерина в желчи и способствуют перевариванию липидов. В печени вначале образуются первичные желчные кислоты — холевая и хенодезоксихолевая (антроподезоксихолевая). Дегидроксилирование этих соединений по С-7 микрофлорой кишечника приводит к образованию вторичных желчных кислот — литохолевой и дезоксихолевой.
Биосинтез стероидных гормонов — процесс не столь заметный в количественном отношении — имеет вместе с тем большое физиологическое значение. Стероиды образуют группу липофильных сигнальных веществ, регулирующих обмен веществ, рост и репродуктивные функции организма.
В организме человека присутствуют шесть стероидных гормонов: прогестерон, кортизол, альдостерон, тестостерон, эстрадиол и кальцитриол (устаревшее название кальциферол). За исключением кальцитриола эти соединения имеют очень короткую боковую цепь из двух углеродных атомов или не имеют ее вовсе. Для большинства соединений этой группы характерно наличие оксогруппы при С-3 и сопряженной двойной связи С-4/С-5 в кольце А. Различия наблюдаются в строении колец С и D. В эстрадиоле кольцо А ароматическое и, следовательно, гидроксильная группа oблaдаeт свойствами фенольной ОН-группы. Кальцитриол отличается от гормонов позвоночных, однако также построен на основе холестерина. За счет светозависимой реакции раскрытия кольца В кальцитриол образует так называемый «секостероид» (стероид с раскрытым кольцом).
Экдизон — стероидный гормон насекомых — представляет собой более раннюю в эволюционном отношении форму стероидов. Стероидные гормоны, выполняющие сигнальную функцию, встречаются также в растениях.
Медиаторы (локальные гормоны) — широко распространенная группа сигнальных веществ, которые образуются почти во всех клетках организма и имеют небольшую дальность действия. Этим они отличаются от классических гормонов, синтезирующихся в специальных клетках желез внутренней секреции. Наиболее важными представителями медиаторов являются гистамин и эйкозаноиды. В этом разделе на примере эйкозаноидов рассматриваются основные свойства медиаторов.
Эйкозаноиды большая группа медиаторов, обладающих широким спектром биологической активности. Предшественником эйкозаноидов является арахидоновая кислота (20:4) — полиненасыщенная жирная кислота, входящая в состав фосфолипидов плазматических мембран.
Биосинтез. Эйкозаноиды образуются почти во всех клетках организма. Биосинтез начинается с гидролиза фосфолипидов плазматической мембраны под действием фосфолипазы А2 [1]. Активность этого фермента строго контролируется гормонами и другими биорегуляторами, сопряженными с G-белками. Свободная арахидоновая кислота также является биологически активным соединением. Однако гораздо большее значение имеют ее метаболиты: простагландины, простациклины, тромбоксаны и лейкотриены, которые носят групповое название эйкозаноиды (от греч. eikosi — 20).
К эйкозаноидам ведут два главных пути биосинтеза. Первый инициируется простагландин-синтазой, обладающей свойствами циклооксигеназы и пероксидазы [2], второй — липоксигеназой [3].
Простагландин-синтаза [2] катализирует двухстадийную реакцию превращения арахидоновой кислоты в простагландин Н2. Последующие реакции, катализируемые различными ферментами, приводят к образованию простагландинов, простациклинов и тромбоксанов.
Окисление полиеновых кислот при участии липоксигеназы приводит к образованию гидроперокси– и гидроксипроизводных жирных кислот, из которых путем дегидратации и за счет различных реакций переноса образуются лейкотриены. На схеме приведены структурные формулы отдельных представителей разных групп эйкозаноидов.
Биологическая активность эйкозаноидов. Эйкозаноиды обладают чрезвычайно разносторонней физиологической активностью. Они служат вторичными мессенджерами гидрофильных гормонов, контролируют сокращение гладко мышечной ткани (кровеносных сосудов, бронхов, матки), принимают участие в высвобождении продуктов внутриклеточного синтеза (гормонов, HCl, мукоидов), оказывают влияние на метаболизм костной ткани, периферическую нервную систему, иммунную систему, передвижение и агрегацию клеток (лейкоцитов и тромбоцитов), являются эффективными лигандами болевых рецепторов.
Эйкозаноиды действуют как локальные биорегуляторы путем связывания с мембранными рецепторами в непосредственной близости от места их синтеза как на синтезирующие их клетки (аутокринное действие), так и на соседние клетки (паракринное действие). В некоторых случаях их действие опосредовано цАМФ и цГМФ.
Метаболизм. Эйкозаноиды инактивируются в течение нескольких секунд в результате восстановления двойных связей и окисления гидроксигрупп. Благодаря быстрому разрушению дальность действия эйкозаноидов ограничена.
Дополнительная информация
Ацетилсалициловая кислота и другие жаропонижающие препараты являются специфическими ингибиторами простагландин-синтазы. Они необратимо инактивируют фермент путем ацилирования остатка серина вблизи активного центра, перекрывая тем самым подход субстрата к активному центру. Этим объясняется болеутоляющее, жаропонижающее и антиревматическое действие подобных препаратов. В желудке такие препараты подавляют биосинтез простагландинов, которые стимулируют выделение мукоидов, защищающих слизистую оболочку от действия протеолитических ферментов. Поэтому продолжительный прием ацетилсалициловой кислоты может вызвать язвенную болезнь желудка и двенадцатиперстной кишки.
Биологические функции липидов
1. Макроэргические вещества. Липиды — наиболее важный из всех питательных веществ источник энергии. В количественном отношении липиды — основной энергетический резерв организма. В основном жир содержится в клетках в виде жировых капель, которые служат метаболическим «топливом». Липиды окисляются в митохондриях до воды и диоксида углерода с одновременным образованием большого количества АТФ (ATP).
2. Структурные блоки. Ряд липидов принимает участие в образовании клеточных мембран. Типичными мембранными липидами являются фосфолипиды, гликолипиды и холестерин. Следует отметить, что мембраны не содержат жиров.
Биомембраны: структура и функции
Структура плазматической мембраны
Все биомембраны построены одинаково; они состоят из двух слоев липидных молекул толщиной около 6 нм, в которые встроены белки. Некоторые мембраны содержат, кроме того, углеводы, связанные с липидами и белками. Соотношение липиды : белки : углеводы является характерным для клетки или мембраны и существенно варьирует в зависимости от типа клеток или мембран.
Компоненты мембран удерживаются нековалентными связями, вследствие чего они обладают лишь относительной подвижностью, т. е. могут диффундировать в пределах липидного бислоя. Текучесть мембран зависит от липидного состава и температуры окружающей среды. С увеличением содержания ненасыщенных жирных кислот текучесть возрастает, так как наличие двойных связей способствует нарушению полукристаллической мембранной структуры. Подвижными являются и мембранные белки. Если белки не закреплены в мембране, они «плавают» в липидном бислое как в жидкости. Поэтому говорят, что биомембраны имеют жидкостно-мозаичную структуру.
В то время как «дрейф» в плоскости мембраны происходит достаточно легко, переход белков с внешней стороны мембраны на внутреннюю («флип-флоп») невозможен, а переход липидов происходит крайне редко. Для «перескока» липидов необходимы специальные белки транслокаторы. Исключение составляет холестерин, который может легко переходить с одной стороны мембраны на другую.
Б. Мембранные липиды
На рисунке схематически изображена биомембрана. В мембранах содержатся липиды трех классов: фосфолипиды, холестерин и гликолипиды. Наиболее важная группа, фосфолипиды, включает фосфатидилхолин (лецитин), фосфатидилэтаноламин, фосфатидилсерин, фосфатидилинозит и сфингомиелин. Холестерин присутствует во внутриклеточных мембранах животных клеток (за исключением внутренней мембраны митохондрий). Гликолипиды входят в состав многих мембран (например, во внешний слой плазматических мембран). В состав гликолипидов входят углеводные функциональные группы, которые ориентируются в водную фазу.
Как уже отмечалось, жирами (1) называются сложные эфиры глицерина с тремя остатками жирных кислот; в клетках жиры присутствуют в форме жировых капель.
Фосфолипиды (2) служат главными компонентами биологических мембран. Их общим отличительным признаком является наличие остатка фосфорной кислоты, который образует сложноэфирную связь с гидроксильной группой sn-С-З глицерина. Поэтому фосфолипиды по крайней мере в нейтральной области рН несут отрицательный заряд.
Наиболее простая форма фосфолипидов, фосфатидовые кислоты, являются фосфо-моноэфирами диацилглицерина. Фосфатидовые кислоты — важнейшие предшественники в биосинтезе жиров и фосфолипидов, Фосфатидовые кислоты могут быть получены из фосфоглицеридов с помощью фосфолипаз.
Фосфатидовая кислота (остаток фосфатидил-) служит исходным веществом для синтеза других фосфолипидов. Остаток фосфорной кислоты может образовывать сложноэфирную связь с гидроксильными группами аминоспиртов (холин, этаноламин или серин) или полиспиртов (миоинозит). В качестве примера здесь приведен фосфатидилхолин. При взаимодействии с глицерином двух остатков фосфатидовой кислоты образуется дифосфатидилглицерин (кардиолипин, на схеме не приведен) — фосфолипид внутренних мембран митохондрий. Лизофосфолипиды образуются из фосфатидовой кислоты при ферментативном отщеплении одного из ацильных остатков и присутствуют, например, в пчелином и змеином яде.
Фосфатидилхолин (лецитин) — широко распространенный фосфолипид клеточных мембран. В фосфатидилэтаноламине (кефалине) вместо остатка холина содержится этанол амин, в фосфатидилсерине — остаток серина, в фосфатидилинозите — остаток циклического многоатомного спирта миоинозита. Его производное — фосфатидилинозит-4,5-дифосфат — важный в функциональном отношении компонент биологических мембран. При ферментативном расщеплении (фосфолипазой) он образует два вторичных мессенджера — диацилглицерин [ДАГ (DAG)] и инозит-1,4,5-трифосфат [ИФ3 (InsP3)].
Наряду с отрицательно заряженной фосфатной группой в некоторых фосфолипидах, например в фосфатидилхолине и фосфатицилэтаноламине. присутствуют положительно заряженные группировки. За счет уравновешивания зарядов эти молекулы в целом нейтральны. Напротив, в фосфатидилсерине один положительный и один отрицательный заряды имеются в остатке серина, а фосфатидилинозит (без дополнительных группировок) в целом заряжен отрицательно за счет фосфатной группы.
Сфинголипиды в большом количестве присутствуют в мембранах клеток нервной ткани и мозге. По строению эти соединения несколько отличаются от обычных фосфолипидов (глицерофосфолипидов). Функции глицерина в них выполняет аминоспирт с длинной алифатической цепью — сфингозин. Производные сфингозина, ацилированного по аминогруппе остатками жирных кислот, называются церамидами (3). Церамиды являются предшественниками сфинголипидов, в частности сфингомиелина (церамид-1-фосфохолина), важнейшего представителя группы сфинголипидов.
Гпиколипиды (3) содержатся во всех тканях, главным образом в наружном липидном слое плазматических мембран. Гликолипиды построены из сфингозина, остатка жирной кислоты и олигосахарида. Заметим, что в них отсутствует фосфатная группа. К наиболее простым представителям этой группы веществ относятся галактозилцерамид и глюкозилцерамид (так называемые цереброзиды). Соединения с сульфогруппой на углеводных остатках носят название сульфатидов. Ганглиозиды — представители наиболее сложно построенных гликолипидов. Они представляют большое семейство мембранных липидов, выполняющих, по-видимому, рецепторные функции. Характерной особенностью ганглиозидов является наличие остатков N-ацетилнейраминовой кислоты.
Липиды мембран представляют собой амфифильные молекулы с полярной гидрофильной головкой (голубого цвета) и неполярным липофильным хвостом (желтого цвета). В водной среде они агрегируют за счет гидрофобных взаимодействий и вандерваальсовых сил.
Мембранные белки
Протеины могут связываться с мембраной различным путем.
Интегральные мембранные белки имеют трансмембранные спирализованные участки (домены), которые однократно или многократно пересекают липидный бислой. Такие белки прочно связаны с липидным окружением.
Периферические мембранные белки удерживаются на мембране с помощью липидного «якоря» и связаны с другими компонентами мембраны; например, они часто бывают ассоциированы с интегральными мембранными белками.
У интегральных мембранных белков фрагмент пептидной цепи, пересекающий липидный бислой, обычно состоит из 21-25 преимущественно гидрофобных аминокислот, которые образуют правую α-спираль с 6 или 7 витками (трансмембранная спираль).
Дополнительная информация
Белки клеточной поверхности и некоторые липидные молекулы несут ковалентно связанные углеводные компоненты, экспонированные на наружной стороне мембраны. Эти гликопротеины и гликолипиды вместе с дополнительными несвязанными гликопротеинами и полисахаридами образуют клеточную оболочку (гликокаликс).
3. Изолирующий материал. Жировые отложения в подкожной ткани и вокруг различных органов обладают высокими теплоизолирующими свойствами. Как основной компонент клеточных мембран липиды изолируют клетку от окружающей среды и за счет гидрофобных свойств обеспечивают формирование мембранных потенциалов.
4. Прочие функции липидов. Некоторые липиды выполняют в организме специальные функции Стероиды, эйкозаноиды и некоторые метаболиты фосфолипидов выполняют сигнальные функции. Они служат в качестве гормонов, медиаторов и вторичных переносчиков (мессенджеров), Отдельные липиды выполняют роль «якоря», удерживающего на мембране белки и другие соединения. Некоторые липиды являются кофакторами, принимающими участие в ферментативных реакциях, например, в свертывании крови или в трансмембранном переносе электронов. Светочувствительный каротиноид ретиналь играет центральную роль в процессе зрительного восприятия. Поскольку некоторые липиды не синтезируются в организме человека, они должны поступать с пищей в виде незаменимых жирных кислот и жирорастворимых витаминов.
РОЛЬ ЛИПИДОВ В ПИТАНИИ
Липиды являются обязательной составной частью сбалансированного пищевого рациона человека. В среднем в организм взрослого человека с пищей ежесуточно поступает 60–80 г жиров животного и растительного происхождения. В пожилом возрасте, а также при малой физической нагрузке потребность в жирах снижается, в условиях холодного климата и при тяжелой физической работе – увеличивается.
http://www.youtube.com/watch?v=3xF_LK9pnL0&feature=related
Значение жиров как пищевого продукта весьма многообразно. Жиры в питании человека прежде всего имеют важное энергетическое значение. Энергетическая ценность жиров выше, чем белков и углеводов. Известно, что при окислении
Известно также, что жир обеспечивает вкусовые качества пищи; кроме того, он необходим для ее приготовления и хранения. Все это привело к тому, что потребление жира в высокоразвитых странах столь велико, что за его счет покрывается более 35%, а во многих странах более 40% энерготрат организма. Это в свою очередь очень часто ведет к тому, что прием обогащенной жирами пищи перекрывает физиологические потребности организма в энергии. Отсюда такие неблагоприятные явления, как ожирение значительной части населения. Поэтому знание метаболизма липидов нормального организма необходимо и для понимания причин многих болезней. Известно, что нарушения метаболизма липидов возникают, например, как при избыточном, так и при недостаточном приеме жиров, дефиците тех или иных ферментов, при дисбалансе гормонов и т.д.
Слюна не содержит расщепляющих жиры ферментов. Следовательно, в полости рта жиры не подвергаются никаким изменениям. У взрослых людей жиры проходят через желудок также без особых изменений. В желудочном соке содержится липаза, получившая название желудочной, однако роль ее в гидролизе пищевых триглицеридов у взрослых людей невелика. Во-первых, в желудочном соке взрослого человеа и других млекопитающих содержание липазы крайне низкое. Во-вторых, рН желудочного сока далек от оптимума действия этого фермента (оптимальное значение рН для желудочной липазы 5,5–7,5). Напомним, что значение рН желудочного сока около 1,5. В-третьих, в желудке отсутствуют условия для эмульгирования тригли-церидов, а липаза может активно действовать только на триглицериды, находящиеся в форме эмульсии. Поэтому у взрослых неэмульгированные триглицериды, составляющие основную массу пищевого жира, проходят через желудок без особых изменений. Вместе с тем расщепление три-глицеридов в желудке играет важную роль в пищеварении у детей, особенно грудного возраста. Слизистая оболочка корня языка и примыкающей к нему области глотки ребенка грудного возраста секретирует собственную липазу в ответ на сосательные и глотательные движения (при кормлении грудью). Эта липаза получила название лингвальной. Активность линг-вальной липазы не успевает «проявиться» в полости рта, и основным местом ее воздействия является желудок. Оптимум рН лингвальной липазы в пределах 4,0–4,5; он близок к величине рН желудочного сока у таких детей. Лингвальная липаза наиболее активно действует на триглицериды, содержащие жирные кислоты с короткой и средней длиной цепи, что характерно для триглицеридов молока. Иными словами, жир молока – самый подходящий субстрат для этого энзима. У взрослых активность лингвальной липазы крайне низкая.
Расщепление триглицеридов в желудке взрослого человека невелико, но оно в определенной степени облегчает последующее переваривание их в кишечнике. Даже незначительное по объему расщепление триглицеридов в желудке приводит к появлению свободных жирных кислот, которые, не подвергаясь всасыванию в желудке, поступают в кишечник и способствуют там эмульгированию жиров, облегчая таким образом воздействие на них липазы панкреатического сока.
После того как химус попадает в двенадцатиперстную кишку, прежде всего происходит нейтрализация попавшей в кишечник с пищей соляной кислоты желудочного сока бикарбонатами, содержащимися в панкреатическом и кишечном соках. Выделяющиеся при разложении бикарбонатов пузырьки углекислого газа способствуют хорошему перемешиванию пищевой кашицы с пищеварительными соками. Одновременно начинается эмульгирование жира. Наиболее мощное эмульгирующее действие на жиры оказывают соли желчных кислот, попадающие в двенадцатиперстную кишку с желчью в виде натриевых солей. Большая часть желчных кислот конъюгирована с глицином или таурином. По химической природе желчные кислоты являются производными холановой кислоты:
Желчные кислоты представляют собой основной конечный продукт метаболизма холестерина. В желчи человека в основном содержатся холевая (3,7,12-триоксихола-новая), дезоксихолевая (3,12-диоксихолановая) и хенодезоксихолевая (3,7-диоксихолановая) кислоты (все гидроксильные группы имеют α-конфигурацию и поэтому обозначены пунктирной линией):
Кроме того, в желчи человека в малых количествах содержатся лито-холевая (3α-оксихолановая) кислота, а также аллохолевая и уреодезокси-холевая кислоты – стереоизомеры холевой и хенодезоксихолевой кислот. Как отмечалось, желчные кислоты присутствуют в желчи в конъюгированной форме, т.е. в виде гликохолевой, гликодезоксихолевой, гли-кохенодезоксихолевой (около 2/3 – 4/5 всех желчных кислот) или таурохо-левой, тауродезоксихолевой и таурохенодезоксихолевой (около 1/5 – 1/3 всех желчных кислот) кислот. Эти соединения иногда называют парными желчными кислотами, так как они состоят из двух компонентов – желчной кислоты и глицина или таурина. Соотношения между конъюгатами обоих видов могут меняться в зависимости от характера пищи: в случае преобладания в ней углеводов увеличивается относительное содержание глициновых конъюгатов, а при высокобелковой диете – тауриновых конъюгатов. Строение парных желчных кислот может быть представлено в следующем виде:
Считают, что только комбинация соль желчной кислоты + ненасыщенная жирная кислота + моноглицерид придает необходимую степень эмульгирования жира. Соли желчных кислот резко уменьшают поверхностное натяжение на поверхности раздела жир/вода, благодаря чему они не только облегчают эмульгирование, но и стабилизируют уже образовавшуюся эмульсию.
Известно, что основная масса пищевых глицеридов подвергается расщеплению в верхних отделах тонкой кишки при действии липазы панкреатического сока. Этот фермент был впервые обнаружен известным французским физиологом С. Bernard в середине прошлого века. Панкреатическая липаза (КФ 3.1.1.3) является гликопротеидом, имеющим мол. массу 48000 (у человека) и оптимум рН 8–9. Данный фермент расщепляет триглицериды, находящиеся в эмульгированном состоянии (действие фермента на растворенные субстраты значительно слабее). Как и другие пищеварительные ферменты (пепсин, трипсин, химотрипсин), панкреатическая липаза поступает в верхний отдел тонкой кишки в виде неактивной пролипазы. Превращение пролипазы в активную липазу происходит при участии желчных кислот и еще одного белка панкреатического сока – колипазы (мол. масса 10000). Последняя присоединяется к пролипазе в молекулярном соотношении 2:1. Это приводит к тому, что липаза становится активной и устойчивой к действию трипсина. Установлено, что основными продуктами расщепления триглицеридов при действии панкреатической липазы являются β(2)-моноглицерид и жирные кислоты. Фермент катализирует гидролиз эфирных связей в α(1), α'(3)-положениях, в результате чего и образуются β(2)-моноглицерид и две частицы (молекулы) жирной кислоты. На скорость катализируемого липазой гидролиза триглицеридов не оказывает существенного влияния ни степень ненасыщенности жирных кислот, ни длина ее цепи (от С12 до С18). Гидролиз триглицеридов при участии панкреатической липазы можно изобразить в виде следующей схемы:
В панкреатическом соке наряду с липазой содержится моноглицеридная изомераза – фермент, катализирующий внутримолекулярный перенос ацила из β(2)-положения моноглицерида в α(1)-положение. В процессе переваривания пищевых жиров при участии этого фермента примерно треть β-моноглицерида превращается в α-моноглицерид. Поскольку эфирная связь в α-положении чувствительна к действию панкреатической липазы, последняя расщепляет большую часть α-моноглицеридов до конечных продуктов – глицерина и жирной кислоты. Меньшая часть α-моноглице-ридов успевает всосаться в стенку тонкой кишки, минуя воздействие липазы.
ОКИСЛЕНИЕ ЖИРНЫХ КИСЛОТ
http://www.youtube.com/watch?v=CLaAPl-_rRM&NR=1
В результате реакции образуется ацил-КоА, являющийся активной формой жирной кислоты.
Транспорт жирных кислот внутрь митохондрий. Коэнзимная форма жирной кислоты, в равной мере как и свободные жирные кислоты, не обладает способностью проникать внутрь митохондрий, где, собственно, и протекает их окисление. Переносчиком активированных жирных кислот с длинной цепью через внутреннюю митохондриальную мембрану служит карнитин.
http://www.youtube.com/watch?v=kOTRNFZHmTI&feature=related
Как отмечалось, ацилирование глицерол-3-фосфата протекает последовательно, т.е. в 2 этапа. Сначала глицерол-3-фосфат-ацилтрансфераза катализирует образование лизофосфатидата (1-ацилглицерол-3-фосфата, а затем 1-ацилглицерол-3-фосфат-ацилтрансфераза катализирует образование фосфатидата (1,2-диацилглицерол-3-фосфата). Далее фосфатидная кислота гидролизуется фосфатидат-фосфогидролазой до 1,2-диглицерида (1,2-диацилглицерола):
Затем фосфохолин реагирует с ЦТФ, образуя цитидиндифосфатхолин (ЦДФ-холин):
У млекопитающих фосфатидилсерин образуется в реакции обмена этаноламина на серин следующим путем:
Таким же путем образуется фосфатидилинозитол.