Прессованные покрытия

June 18, 2024
0
0
Зміст

ПРОИЗВОДСТВО ТАБЛЕТОК ПОКРЫТЫХ ОБОЛОЧКОЙ

 

Покрытие таблеток оболочками имеет многостороннее значение и преследует следующие цели:

·        защита таблеток от экстремальных факторов внешней среды (ударов, истирания, др.);

·        защита от воздействий окружающей среды (света, влаги, кислорода и углекислоты воздуха);

·        маскировка неприятного вкуса и запаха содержащихся в таблетках лекарственных веществ;

·        защита от окрашивающей способности лекарственных веществ, содержащихся в таблетках (например, таблетки активированного угля);

·        защита содержащихся в таблетках лекарственных веществ от кислой реакции желудочного сока;

·        защита слизистой рта, пищевода и желудка от раздражающего действия лекарственных веществ;

·        локализация терапевтического действия лекарственных веществ в определенном отделе желудочно-кишечного тракта;

·        предотвращение нарушений процессов пищеварения в желудке, возможных при нейтрализации желудочного сока лекарственными веществами основного характера;

·        пролонгирование терапевтического действия лекарственных веществ в таблетках;

·        преодоление несовместимости различных веществ, находящихся в одной таблетке путем введения их в состав оболочки и ядра;

·        улучшение товарного вида таблеток и удобства их применения

При покрытии таблеток оболочками применяют различные вспомогательные вещества, которые условно можно разделить на следующие группы:

·        адгезивы, обеспечивающие прилипание материалов покрытия к ядру и друг к другу (сахарный сироп, ПВП, КМЦ, МЦ, АФЦ, ОПМЦ, ЭЦ, ПЭГ и др.);

·        структурные вещества, создающие каркасы (сахар, магния оксид, кальция оксид, тальк, магния карбонат основной);

·        пластификаторы, которые придают покрытиям свойства пластичности (растительные масла, МЦ, ПВП, КМЦ, твины и др.);

·        гидрофобизаторы, придающие покрытиям свойства влагостойкости (аэросил, шеллак, полиакриловые смолы, зеин ); 

·        красители, служащие для улучшения внешнего вида или для обозначения терапевтической группы веществ: (тропеолин 00, тартразин, кислотный красный 2С, индигокармин и др.);

·         корригенты, придающие покрытию приятный вкус (сахар, лимонная кислота, какао, ванилин и др.).

Применяется более 50 наименований пленкообразователей.

Таблеточные покрытия в зависимости от их состава и способа нанесения разделяют на следующие группы:

·        Прессованные ( или сухие ) покрытия.

·        Пленочные покрытия.

·        Дражированные покрытия (нанесение сахарной оболочки).

Прессованные покрытия

Нанесения оболочек прессованием («сухие» покрытия) осуществляют с помощью таблеточных машин типа «Драйкота» английской фирмы «Манести» или отечественной РТМ-24Д. Машина представляет собой сдвоенный агрегат, состоящий из двух роторов.

Таблеточная машина «Драйкота»

Рис. 2.12. Таблеточная машина «Драйкота» 1 – бункер с гранулятом; 2 – ротор; 3 – пуансон; 4 – ролик; 5 – регулировочный винт; 6 – бункер с массой для оболочки; 7, 8 – передатчики; 9 – емкость для готовых таблеток

На первом роторе обычным способом прессуются таблетки-ядра двояковыпуклой формы, которые с помощью специально транспортирующего устройства передаются на второй ротор, где происходит нанесение покрытия. Схема нанесения покрытия прессованием выглядит следующим образом.

 Сначала происходит заполнение гнезда матрицы порцией гранулята, необходимого для образования нижней части (половины) покрытия, затем на гранулят по специальным направлениям с первого ротора подается таблетка-ядро, на которую наноситься покрытие. После фиксации таблетки точно по центру гнезда матрицы нижний пуансон несколько опускается, после чего происходит отпускание верхнего пуансона, который слегка впрессовывает таблетку-ядро в находящуюся под ней порцию гранулята, или создает над таблеткой пространство для заполнения второй порции гранулята. После подачи этой порции происходит окончательное формирование покрытия путем прессования, осуществляемого одновременно верхним и нижним пуансоном. На заключительной стадии осуществляется выталкивание таблетки, покрытые оболочкой.

Производительность машины 10 500 табл./час.

К недостаткам этого метода следует отнести: значительный расход материала для покрытия, увеличение массы и размера таблеток, неравномерность оболочки по толщине, трудность переработки брака, нарушение центровки ядра, значительная пористость покрытий, приводящая к увеличению объема в результате набухания таблеток-ядер при поглощении ими влаги из воздуха, проникающего сквозь поры оболочки. При этом происходит образование трещин в прессованной оболочке или даже ее отслаивание.

Однако, главным достоинством данного метода покрытия является исключение из технологии растворителей. В связи с этим прессованные покрытия рациональны для таблетокгигроскопичных и чувствительных к воздействию влаги веществ (антибиотики).

С целью пролонгации эффекта действующего вещества его вводят в составы как ядра, так и покрытия. Покрытие быстро распадается в желудке (начальная доза), а ядро (таблетка) постепенно распадается, поддерживая определенную постоянную концентрацию вещества в организме. Этот метод позволяет преодолеть несовместимость находящихся в однойтаблетке различных веществ, вводя их в состав оболочки и ядра.

Пленочные покрытия

Пленочным покрытием называется тонкая (порядка 0,05-0,2 мм) оболочка, образующая на таблетке после высыхания нанесенного на ее поверхность раствора пленкообразующего вещества. Они имеют следующие преимущества:

·        Возможность избирательной растворимости таблеток в желудке или кишечнике.

·        Регулирование скорости адсорбции лекарственных веществ.

·        Возможность совмещения в одной лекарственной форме несовместимых лекарственных веществ.

·        Сохранение физических, химических и механических свойств ядер таблеток при нанесении пленочных покрытий.

·        Сохранение первоначальных геометрических параметров таблеток, их формы, маркировки, фирменных обозначений.

·        Уменьшение массы объема пленочного покрытия по сравнению с дражировочным.

·        Возможность автоматизации процесса покрытия, интенсификации производства и сокращение производственных площадей.

В зависимости от растворимости, пленочные покрытия разделяют на следующие группы:

А) водорастворимые покрытия;

Б) покрытия, растворимые в желудочном соке;

В) кишечнорастворимые покрытия;

Г) нерастворимые покрытия.

Водорастворимые покрытия и покрытия, растворимые в желудке.

Водорастворимые покрытия улучшают внешний вид таблеток, корригируют их вкус и запах, защищают от механических повреждений. Покрытия, растворимые в желудке, предохраняют таблетки от воздействия влаги воздуха; они разрушаются в организме в течение 10-30 мин.

Для получения водорастворимых покрытий полиэтиленоксид и поливинилпирролидон наносят на таблетки в виде 20-30% растворов в 50-90% этиловом или изопропиловом спирте, метилцеллюлозу и натриевую соль карбоксиметилцеллюлозы – в виде 4-7% водных растворов.

Покрытия, растворимые в желудочном соке, представляют бензиламино- и диэтиламинобензилцеллюлозой, п-аминобензоатоми, сахарозой, глюкозой, фруктозой, маннитом, винилпиридином, зеином и желатином.

Кишечнорастворимые покрытия. 

Кишечнорастворимые покрытия защищают лекарственное вещество, содержащее в таблетке от действия кислой реакции желудочного сока, предохраняет слизистую желудка от раздражающего действия некоторых лекарств, локализируют лекарственное вещество в кишечнике, пролонгируя в определенной степени его действие. Кишечнорастворимые покрытия обладают также более выраженным, чем у вышеперечисленных групп покрытий влагозащитным эффектом.

Процесс растворения энтеросолюбильных оболочек в организме обусловлен воздействием на них комплекса ферментов и различных солюбилизирующих веществ, содержащихся в кишечном соке.

Для получения кишечнорастворимых покрытий в качестве пленкообразователей используются высокомолекулярные соединения со свойствами полиэлектролитов с большим числом карбоксильных групп. Они диссоциируют в нейтральной или щелочной среде с образованием нерастворимых солей. Применяются природные вещества: шеллак, карнаубский воск, казеин, кератин, парафин, церезин, спермацет, цетиловый спирт, а также синтетические продукты, стеариновую кислоту в сочетании с жирами и желчными кислотами, бутилстеарат, фталаты декстрина, моносукцинаты ацетилцеллюлозы, метилфталилцеллюлозы.

Чаще всего для получения кишечнорастворимых покрытий используют ацетилфталилцеллюлозу, как вещество, наиболее устойчивое к воздействию желудочного сока. Перечисленные пленкообразователи наносят на таблетки в виде растворов в этиловом, изопропиловом спирте, ацетоне или в смесях указанных растворителей. Для получения окрашенных оболочек в растворы добавляют пигменты и красители.

Кишечнорастворимые покрытия выдерживают (2-4 часа и более) воздействия желудочного сока, что позволяет таким таблеткам в неизменном виде пройти через желудок; в кишечном же соке они распадаются в течение 1 часа, обеспечивая высвобождение лекарственного вещества в кишечнике.

Нерастворимые покрытия.

Основное назначение покрытий данного типа – защита таблетки от механического повреждения и от воздействия атмосферной влаги, устранение неприятного запаха и вкуса лекарственного вещества, пролонгирование его действия. К ним относят этилцеллюлозу, монолаурат полиэтилен сорбита, поверхностно-активные вещества и др. Механизм высвобождения лекарственного вещества из таблеток с нерастворимыми оболочками заключается в следующем. После поступления таблетки в желудочно-кишечный тракт пищеварительные соки проникают в нее сквозь микропоры оболочки и вызывают или растворение содержимого таблетки, или ее набухание. В первом случае растворенные вещества диффундируют через пленку в обратном направлении – в сторону желудочно-кишечного тракта под влиянием разности концентраций, во втором – происходит разрыв оболочки за счет увеличения объема таблетки, после чего лекарственное вещество высвобождается обычным образом

Требования к пленкообразующим веществам:

·        Полная безвредность для организма.

·        Хорошая растворимость в широко доступных органических растворителях.

·        Хорошие пленкообразующие свойства.

·        Химическая индифферентность.

·        Устойчивость при длительном хранении (сохранении прочности, эластичности и растворимости).

·        Доступность.

Способы нанесения пленочных покрытий

Существуют 3 способа нанесения пленочных покрытий на таблетки:

·        Погружение в раствор пленкообразующего вещества.

·        Наслаивание в дражировочном котле.

·        Получение покрытия во взвешенном слое.

Первый способ основан на погружении таблеток поочередно, то одной, то другой стороной в покрывающий раствор. Таблетки фиксируются с помощью вакуума на металлическом перфорированном листе специальной машины, производительность которой составляет 5-8 тыс. покрытых таблеток в час. Машины подобного типа выпускаются фирмой «Артур Колтон». Этот способ достаточно сложен и пригоден лишь для нанесения на таблетки вязких, но не слишком клейких растворов. В настоящее время в связи с недостаточно высокой производительностью он применяется редко.

Наиболее широко применяется способ нанесения пленочных покрытий в дражировочном котле. Этот способ недорог, применим для растворов практически любой вязкости, обладает высокой производительностью. Для нанесения покрытия двояковыпуклые таблетки помещают в дражировочный котел, который в период работы вращается со скоростью 20-25 об/мин. Перед началом процесса покрытия с поверхности таблеток сильной воздушной струей удаляется пыль. Покрывающий раствор вводят в котел путем периодического разбрызгивания с помощью установленных у отверстия котла форсунок. Для сушки оболочек таблетки обдувают в котле воздушной струей.

Для нанесения покрытия в псевдоожиженном слое используется установка, конструкция которой почти не отличается от установки типа СГ, применяемой для получения гранулята. Форсунки для разбрызгивания покрывающего раствора устанавливаются в нижней или верхней части рабочей камеры аппарата. Определенное количество таблеток помещают в рабочую камеру, включают вентилятор (компрессор), и под действием образующегося воздушного потока массы таблеток переводится в псевдоожиженное состояние. Непосредственно после этого с определенной скоростью в камеру подается покрывающий раствор.

Скорость поступления раствора определяется его вязкостью, скорость движения воздуха в аппарате – размером камеры и количеством находящихся в ней таблеток. Продолжительность процесса нанесения покрытия зависит от необходимой толщины оболочки и колеблется от 15 до 45 минут. После прекращения пульверизации раствора скорость движения воздуха слегка увеличивают, при этом образование пленочной оболочки происходит наиболее эффективно, процесс сушки покрытия значительно сокращается по сравнению с остальными способами.

Пленочное покрытие незначительно увеличивает вес таблеток. Благодаря применению летучих органических растворителей исключается длительная стадия сушки оболочек. Продолжительность процесса нанесения пленочного покрытия составляет 2-4 часа.

Пленочные покрытия можно наносить не только на таблетки, но и на гранулы или на частицы порошкообразного материала.

Основным недостатком нанесения пленочных покрытий в промышленных масштабах является значительное увеличение концентрации паров зачастую ядовитых и огнеопасных органических растворителей в помещениях цехов, что требует принятия соответствующих мер противопожарной безопасности, установке мощности приточно-вытяжной вентиляции и защиты органов дыхания находящихся в этих помещениях работников.

В производстве для нанесения пленочных покрытий на основе органических растворителей применяют установки УПТ-25 и УЗЦ-25 (рис. 2.13).

Принципиальная схема установки для покрытия таблеток типа УЗЦ-25

Рис. 2.13. Принципиальная схема установки для покрытия таблеток типа УЗЦ-25

1 – водоохлаждающая установка, 2 – конденсатор растворителя, 3 – система трубопроводов, 4 – привод дражировочного котла, 5 – местный отсос, 6 – дражировочный котел, 7 – блок приготовления покрывающего раствора, 8 – пульт управления, 9 – кожух дражировочного котла, 10 – покрываемые таблетки, 11 – распылитель, 12 – калорифер, 13 – вентилятор, 14 – сборник растворителя

Установка замкнутого цикла УЗЦ-25 способна улавливать пары растворителей, регенерировать их и снова пускать в производство. На этой установке производят таблетки ПАСК – Na (натриевая соль парааминосалициловой кислоты) с пленочным кишечнорастворимым покрытием.

Установка работает следующим образом. В дражировочный котел 6, вращающийся от привода 4, загружаются подлежащие покрытию таблетки. Система изолируется. В блоке 7, имеющем два аппарата с мешалкой, готовится покрывающий раствор. Система трубопроводов 3 заполняется азотом.

На пульте управления 8 задаются параметры ведения процесса – температура осушающего воздуха, время распыления раствора; на дозирующем насосе задается расход раствора. Вентилятором 13 азот подается в калорифер 12, где нагревается до заданной температуры, затем, входя в котел 6, омывает перемешиваемые таблетки 10, на которые с помощью распылителя 11 наносится покрывающий раствор. Азот с парами растворителя поступает в конденсатор 2, где растворитель конденсируется и собирается в сборнике 14. При необходимости к конденсатору подключается водоохлаждающая установка 1. Осушенный азот вновь поступает на вентилятор.

Этот цикл повторяется многократно до полного покрытия таблеток. По окончании покрытия производится разгерметизация кожуха дражировочного котла 9, для чего предварительно из системы с помощью вакуума удаляется азот с парами растворителя. Котел открывается, и остаток паро-газовой смеси удаляется из него местным отсосом 5. Покрытые таблетки выгружаются путем наклона котла.

Дражированные покрытия.

Дражированное (от франц. dragee – нанесение сахарной оболочки) покрытие – это наиболее старый тип таблеточных оболочек, применяемый с начала ХХ века. Основным назначением этих оболочек является защита таблеток от внешних воздействий, маскировка неприятного вкуса и запаха лекарственного вещества, улучшение внешнего вида таблеток. Иногда в состав оболочек добавляют вещества, защищающие таблетку от воздействия желудочного сока.

Создание дражированных оболочек осуществляется в дражировочных котлах или обдукторах, которые бывают трех форм: шарообразная, эллипсоидная и грушевидная. Наиболее распространена эллипсоидная форма, преимущества ее заключаются в возможности большей загрузки таблетками и создании большого давления на них. Кроме того, в котлах такого типа создаются оптимальные вращательные движения дражированных таблеток, ускоряющие и улучшающие условия нанесения оболочки.

Форма котла, степень его загрузки, скорость вращения, наклон котла к горизонтали, а также площадь поверхности дражированных таблеток значительно влияют на качество покрытия. Оптимальная скорость котла – 18-20 об/мин, угол наклона котла к горизонтали – 30-45°, оптимальная загрузка – 25-30% от объема котла.

Дражированная таблетка состоит из таблетки-ядра, содержащей лекарственное вещество и покрытия, содержащего комплекс вспомогательных веществ.

Таблетка-ядро должна быть механически прочной. Это обусловлено тем, что на таблетку при дражировании действуют четыре фактора:

·        суммарная масса таблеток, зависящая от величины загрузки котла (с увеличением загрузки и скорости вращения котла возрастает возможность разрушения таблеток);

·        свободное падение таблеток с верхней точки вращающегося котла на нижнюю (эта сила прямо пропорциональна массе таблеток и высоте, с которой они падают);

·        кинетическая энергия вращающихся таблеток в котле (таблетка не просто произвольно падает, а создается вращательный момент, сила которого зависит от массы таблетки и скорости вращения котла);

·        расклинивающий эффект жидкостей, применяемых при дражировании.

Таблетки, подлежащие дражированию, не должны иметь плоскую форму, во избежания их возможного слипания. Для дражирования рекомендуются два типа таблеток:

·        со средним овалом поверхности, глубина кривизны составляет около 15% диаметра, высота по центру – 25-30% диаметра (R=0,75d);

·        со стандартной кривизной поверхности (малый овал),глубина кривизны составляет 10% диаметра, высота по центру – не менее 25% диаметра таблетки (R=1,1d).

До 1975 года на отечественных химико-фармацевтических заводах существовала технология покрытия таблеток методом сахарно-мучного дражирования.

Стадии технологического процесса дражирования:

Обволакивание или грунтовка.

Наслаивание или накатка.

Сглаживание или полировка.

Глянцовка.

Обволакивание или грунтовка состоит в том, что движущиеся таблетки в дражировочном котле увлажняют сахарным сиропом 64-70% концентрации и обсыпаются пшеничной мукой или же смесью ее с магния карбонатом основным. После обсыпки таблетки вращаются 25-30 минут, после чего их сушат теплым воздухом (40-50°С) в течение последующих 30-40 минут.

Операции увлажнения таблеток, обсыпки, свободного вращения и сушки повторяют 2-3 раза. Стадия обволакивания, если в этом есть необходимость, применяется для изоляциитаблетки-ядра от проникновения влаги, особенно в первые моменты увлажнения таблеток.

За стадией обволакивания следует стадия наслаивания или накатки. Во всем технологическом цикле дражирования это самая важная стадия, так как именно здесь происходит, в основном, образование всей оболочки.

На этой стадии одни заводы применяют сахарно-мучное тесто для наслаивания, на других – таблетки увлажняли сахарным сиропом и обсыпали магния карбонатом основным или же смесью его с пшеничной мукой в равных количествах.

После одноразовой подачи сахарно-мучного теста таблеткам дают свободное вращение, перемешивая их в котле в течение 30-40 минут. Затем таблетки сушат теплым воздухом в течение 20-30 минут. Операции подачи теста, свободного вращения, сушки таблеток повторяют многократно до получения определенного веса таблеток.

За стадией наслаивания идет стадия сглаживания или полировки, которую осуществляют с помощью сахарного сиропа с добавлением небольших количеств желатина (до 1%) икрасителей. На этой стадии происходит удаление неровностей, шероховатостей.

Последней стадией процесса дражирования является стадия глянцевания, т. е. придания таблеткам блеска, хорошего товарного вида. Ее можно осуществлять двумя способами.

Применяя первый способ, готовят глянцовочную мастику следующего состава, %:

Воска пчелиного

45

Масла вазелинового

45

Талька

10

 

Глянцовочную мастику в количестве 0,05-0,06% руками наносят на вращающиеся теплые таблетки и дают свободное вращение таблеткам 30-40 минут. Затем таблетки обсыпают небольшим количеством талька для ускорения получения глянца.

Применяя второй способ, отполированные таблетки выгружают из котла и помещают в специальный котел, стенки которого покрыты воском. Включают вращение котла на 1,5-2 часа и таким образом получают глянец.

Сахарно-мучное дражирование имеет ряд существенных недостатков.

Исследования показали, что в процессе хранения в результате окислительных процессов и энзиматического расщепления белковых веществ в муке образуются свободные органические кислоты с выделением газообразных веществ, что ведет к прогорканию. В результате этого мука, входящая в состав покрытия, ухудшает его физико-механические свойства и часто ведет к растрескиванию покрытия.

Сахарно-мучное тесто, применяемое при дражировании, по своей консистенции не гомогенно и покрытие, получаемое на его основе не имеет ровной однородной поверхности. Мучное тесто затрудняет возможность механизировать и автоматизировать процесс. Кроме того, сахарно-мучное дражирование характеризуется трудоемкостью и длительностью времени.

В связи с вышеизложенным проф. Пашневым П.Д. (Харьков) разработан новый способ покрытия таблеток – суспензионный метод дражирования.

Состав суспензии, %

Сахар

58,00

Вода

24,85

Поливинилпирролидон

0,75

Аэросил

1,00

Магния карбонат основной

13,40

Титана двуокись

2,00

 

Сочетание сахара и воды представляет собой 70% сахарный сироп, являющийся носителем суспензии.

Поливинилпирролидон (ПВП) является высокомолекулярным соединением винилпирролидона. В растворе молекулы ПВП, присоединяясь друг к другу, образуют пространственную сетку. Молекулы сахара, растворенные в воде, оказываются заключенными в ячейки сетки.

В процессе сушки покрываемых таблеток вода, находящаяся в отдельных ячейках сетки, удаляется. Оставшийся в ячейках сетки сахар, кристаллизуясь, не имеет возможности соединяться в агломераты. При этом образуется мелкодисперсные кристаллы, обладающие меньшей хрупкостью и большей пластичностью.

Аэросил (аморфная двуокись кремния), применяемый в суспензии, является ее стабилизатором. Механизм стабилизации заключается в том, что на поверхности частичек аэросила имеются силаноловые группы, которые с помощью водородных мостиков с водой образуют гель. Образовавшийся гель препятствует седиментации взвешенных частиц. Магния карбонат основной – наполнитель. Титана диоксид – краситель (пигмент).

Стадии суспензионного метода дражирования таблеток:

·        Нанесение на таблетки покрытия из неокрашенной суспензии.

·        Нанесение на таблетки покрытия из окрашенной суспензии или окрашенного сиропа.

·        Глянцевание таблеток.

·        Суспензионное дражирование таблеток осуществляют как на обычных дражировочных котлах, так и на автоматических линиях фирмы «Штенберг» (Германия) и «Пеллегрини» (Италия).

Технологический режим дражирования заключается в следующем:

В дражировочный котел загружают таблетки-ядра в количестве 25-30% от объема котла, предварительно обкатанных и обеспыленных. Включают привод котла и на вращающиесятаблетки подают 2-2,5% суспензии методом полива или же разбрызгивания с помощью форсункиТаблеткам дают «раскататься» в течение 4-5 минут. Угол наклона котла к горизонтали составляет 45°, скорость вращения его 20-25 об/мин. После чего таблетки сушат теплым воздухом 40-45°С в течение 3-4 минут.

Операции подачи суспензии, обкатки и сушки повторяют многократно до получения определенной массы таблеток.

О режиме нанесения окрашенного покрытия на основе окрашенной суспензии или окрашенного сиропа и глянцевании таблеток говорилось выше.

Суспензионный метод покрытия таблеток позволил автоматизировать процесс, уменьшить трудозатраты, повысить производительность труда в 3-5 раз.

Новая технология улучшила качество покрытых таблеток:

а) снизился их средний вес;

б) улучшен товарный вид;

в) повысилась стабильность покрытых таблеток – срок годности препаратов увеличился с 1 года до 4 лет;

г) исключен пищевой продукт – мука, приводившая к растрескиванию покрытия.

Контроль качества таблеток

Одним из основных условий промышленного производства таблеток является соответствие готовой продукции требованиям действующей нормативно-технической документации. Качество выпускаемых таблеток определяется различными показателями, которые подразделяются на следующие группы:

·        Органолептические

·        Физические

·        Химические

·        Бактериологические

·        Биологические

Определение качества таблеток начинается с оценки их внешнего вида (органолептических свойств), на которые влияют следующие факторы:

·        условия прессования;

·        адгезионные и когезионные свойства таблетируемой массы, ее влажность;

·        гранулометрический состав;

·        поверхность и точность пресс-инструмента;

·        способ покрытия и др.

К физическим показателям качества относятся геометрические (форма таблетки, геометрический вид поверхности, отношение толщины таблетки к ее диаметру и т.д.) и собственные физические показатели (масса таблетки, отклонения от заданной величины массы, показатели прочности, пористости, объемной плотности, а также показатели внешнего вида – окрашенность, пятнистость, целостность, наличие знаков или надписей, отсутствие металлических включений и т.д.).

К химическим показателям относятся: распадаемость, растворимость и постоянство химического состава, активность лекарственного вещества, срок годности таблеток, их стабильность при хранении и т.д.

К бактериологическим показателям качества относятся обсемененность таблеток микроорганизмами, спорами и бактериями непатогенного характера с содержанием не более установленного количества.

Контроль качества готовых таблеток проводят согласно требованиям фармакопейной статьи «Таблетки», а также частным фармакопейным статьям по следующим показателям:

органолептические свойства – ГФ ХI изд., вып. 2, с. 154-155;

механическая прочность – ГФ ХI изд., вып. 2, с. 157-158;

распадаемость – ГФ ХI изд., вып. 2, с. 158-159;

растворение – ГФ ХI изд., вып. 2, с. 159-160;

средняя масса таблеток и отклонение в массе отдельных таблеток – ГФ ХI изд., вып. 2, с. 156;

содержание лекарственных веществ в таблетках – ГФ ХI изд., вып. 2, с. 156;

однородность дозирования – ГФ ХI изд., вып. 2, с. 156-157;

определение талька, аэросила – ГФ ХI изд., вып. 2, с. 157.

Некоторые дополнительные требования по качеству таблеток изложены в частных фармакопейных статьях.

 Оценка внешнего вида таблеток. 

Просматривают 20 таблеток и делают заключение о дефектах поверхности или их отсутствии. Определяют с помощью штангенциркуля размерытаблетки (диаметр, высота), тип таблетки согласно ОСТ64-072-89, а также цвет и разделительную риску. При этом на таблетках не должно быть следующих дефектов размера, цвета, покрытия, шрифта надписи, разделительной риски:

·        выступы (поверхность в выступах, прилипших частиц порошка);

·        углубление (лунки, выкрошенные части таблеток);

·        грязь или пыль на таблетках;

·        мраморность (неравномерный цвет, локальное, местное изменение цвета);

·        сколы (отслоение или сколы таблетки, уменьшение толщины);

·        слипание (слипание двух таблеток вместе или их соединение разрушенными поверхностями);

·        крошение;

·        деформация (нарушение округлости формы);

·        царапины (нанесение риски – царапины по поверхности таблеток);

·        дефект покрытия (поверхность покрытия неравномерна, различной толщины, смещена по отношению к ядру).

Таблетки должны иметь круглую или иную форму с плоскими или двояковыпуклыми поверхностями, цельными краями, поверхность должна быть гладкой и однородной, цвет – равномерным, если в частных статьях нет других указаний.

Определение распадаемости таблеток.

Наиболее правильным способом определения распадаемости таблеток явилось бы наблюдение их поведения в человеческом желудке путем получения рентгенснимков. Однако, при массовом производстве таблеток это затруднительно, вследствие чего во всем мире приняты условные методы определения распадаемости таблеток, проводимые вне организма человеческа.

Согласно ГФ ХI для определения распадаемости таблеток используется метод и прибор, предложенные американскими учеными Штолем и Гершбергом. Прибор 545-АК-1 типа «качающаяся корзинка» для определения времени распадаемости таблетокдражегранул и желатиновых капсул выпускается Мариупольским заводом технологического оборудования медицинской промышленности (рис. 2.14).

Рис. 14.14. Прибор типа 545-АК-1

Рис. 2.14. Прибор типа 545-АК-1

Прибор состоит из качающейся корзинки (3), сосуда (2) с жидкой средой (вода, искусственный желудочный или кишечный сок), в который погружается корзинка термостатического устройства (1), позволяющего поддерживать постоянную температуру среды в пределах 37±2°С и электромотора (6), сообщающего корзинке возвратно-поступательное движение. Качающаяся корзинка состоит из 2-х бакелитовых дисков с диаметром 90 мм с концетрически расположенными 6 отверстиями. В отверстия дисков вставлены стеклянные трубки длиной 77,5 мм и наружным диаметром 25,5 мм. Нижний диск снабжен сеткой из нержавеющей стальной проволоки с диаметром отверстий 2 мм. Корзинка посредством стального стержня (4) присоединена к рычагу (5) электромотора.

Преимуществом этого метода является стандартизация условий проверки, постоянная амплитуда качаний, частота циклов 28-32 в мин., удаление частиц распавшейся таблетки, постоянство температуры, регламентация размеров частиц, возможность проверки одновременно 5-6 таблеток, механизация определения.

Недостаток метода заключается в необходимости визуального наблюдения с целью установления момента окончательного распадания таблеток.

Более совершенным методом является определение распадаемости таблеток в приборе фирмы «Эрвека» (ФРГ). Отличается этот прибор устройством, производящим автоматическое прекращение колебания корзинки в момент полного распадания таблетки. Одновременно автоматически останавливаются часы и фиксируется время распадания.

Нормы распадаемости таблеток:

·        обычные таблетки – 15 мин.;

·        таблетки, покрытые оболочками, растворимыми в желудке – не более 30 мин. (если нет других указаний в отдельных фармакопейных статьях). Таблетки, покрытые кишечно-растворимыми оболочками, не должны распадаться в течение 1 часа в растворе кислоты хлористоводородной 0,1 моль/л, а после промывания водой должны распадаться не более, чем за 1 час в щелочном растворе натрия гидрокарбоната;

·        сублингвальные таблетки – вода, 30 мин.;

·        таблетки для приготовления растворов – вода, 5 мин.;

·        таблетки пролонгированного действия – по методикам, приведенным в отдельных фармакопейных статьях;

·        таблетки вагинальные – молочнокислая среда, не более 10 мин.

Определение механической прочности таблеток. 

Определение механической прочности таблеток проводят на приборах, одни из которых позволяют определить прочность на сжатие (раскол), другие – на истирание. Объективную оценку механических свойств таблеток можно получить, проводя определение их прочности обоими способами. Это объясняется тем, что ряд таблетированных препаратов, удовлетворяя требованиям на сжатие, имеют легко истираемые края и по этой причине оказываются недоброкачественными. Следует отметить, что определение прочности на сжатие не является фармакопейным методом.

Прочность на сжатие. 

Механическую прочность таблеток на сжатие можно определять на различных приборах: ХНИХФИ (рис. 2.15), ТВТ фирмы «Эрвека» (ФРГ), ПИТ-20 (Мариупольского завода технологического оборудования) и др. Все они работают по принципу пружинного динамометра.

Прибор ХНИХФИ для определения прочности таблеток

Рис. 2.15. Прибор ХНИХФИ для определения прочности таблеток

Прибор ХНИХФИ состоит из цилиндрического корпуса, в котором расположен плунжер, винтовая пружина, нажимной винт и гайка. К гайке прикреплена линейка со шкалой, градуированной в килограммах. На линейке помещается ползунок, служащий для фиксации показаний, на который воздействует стрелка, связанная с плунжером. В стенке корпуса сделан прорез ,в который входят гайки и плунжера, препятствующие их проворачиванию.

Испытуемая таблетка сжимается между плунжером и неподвижным упором на корпусе. Винт вращается при помощи маховичка. Шкала градуирована на 15 кг. Таблетку, поставленную на ребро, сжимают до разрушения. Ползунок на линейке динамометра фиксирует нагрузку, вызвавшую разрушение таблетки. Необходимо определить прочность не менее 3-х таблеток и вычислить среднее арифметическое этих измерений.

Показатель прочности таблеток рассчитывается по формуле:

formula 4.9,

где К – показатель прочности, МПа;

Р – разрушающая нагрузка, H;

d – диаметр таблетки по центру, мм;

h – высота таблетки по центру, мм.

Показатель прочности должен быть 0,45-1,2 МПа.

Из приборов зарубежного производства известен прибор модели ТВТ фирмы «Эрвека», ФРГ (рис. 2.16).

http://ztl.pp.ua/html/medication/images/14_12_fig02.gif

Рис. 2.16. Прибор модели ТВТ фирмы «Эрвека» для определения прочности таблеток

В приборе модели ТВТ фирмы «Эрвека» нагрузка передается на таблетку рычажно-весовым способом, обеспечивающим минимальную погрешность измерений. Прибор работает полуавтоматически. Испытуемую таблетку (1) помещают в специальную вставку (2) на наковальне, регулируемой по высоте, и подводят к конусовидному поршню (3), который оказываетдавление на таблетку до ее разрушения. Величина давления, вызвавшая разрушение таблетки, фиксируется на шкале прибора с делениями от 0 до 15 кг. Механическая прочностьтаблетки рассчитывается по формуле:

formula 4.10,

где qm – механическая прочность таблетки на радиальное сжатие, МПа;

Pr – разрушающие усилие, H;

Kф – коэффициент формы;

h – высота таблетки, мм;

d – диаметр таблетки, мм.

Прочность на истирание.

Механическая прочность характеризуется также степенью истираемости таблеток. Истираемость наблюдается при упаковке, фасовке и транспортировке, будучи особенно сильной на фасовочных машинах. Признаком истираемости является образование порошкообразной пыли на таблетках и упаковке. Истираемость определяют на приборе барабанного типа – фриабиляторе 545-Р-АК-8 (рис. 2.17) Мариупольского завода технологического оборудования или же фирмы «Эрвека».

Фриабилятор типа 545-Р-АК-8

Рис. 2.17. Фриабилятор типа 545-Р-АК-8

Прибор состоит из барабана диаметром 200 мм со съемной крышкой, по внутреннему периметру которого расположены 12 лопастей под углом 20° к касательной барабана, механизма и электрооборудования, обеспечивающего вращение барабана со скоростью 20 об/мин. 10 таблеток, обеспыленных и взвешенных с точностью до 0,001 г помещают в барабан, привинчивают крышку и включают прибор на 5 минут, что соответствует 100 оборотам барабана. По истечении установленного времени таблетки обеспыливают и определяют их массу с точностью до 0,001 г.

Прочность таблеток на истирание в процентах вычисляют по формуле:

formula 4.11,

где Рнач., Ркон. – масса таблеток до и после истирания, соответственно; г.

Форма таблеток не должна изменяться в процессе истирания. Прочность на истирание должна быть не менее 97%. Для таблеток, покрытых оболочкой, и тритурационных таблетокпрочность на истирание не определяется.

Растворение.

 Определение распадаемости таблеток не дает информации о высвобождении лекарственных веществ из распавшейся лекарственной формы и не позволяет сделать заключение об их доступности.

Более надежным контролирующим методом является «тест-растворение». При этом анализируется количество лекарственного вещества (в интервалах времени), диффундирующего из целых или распавшихся таблеток в растворяющую жидкость (вода, 0,1 н раствор кислоты хлористоводородной, 0,1 н раствор натрия гидроксида, буферные растворы, искусственные пищеварительные соки и др.).

На рис. 2.18 показан общий вид отечественного прибора типа 545-АК-7 «вращающаяся корзинка» для определения скорости растворения.

Прибор устроен и работает следующим образом: на основании (1) установлен термостатированный сосуд (2), в который помещается стакан (3) для среды – растворителя. Требуемая температура (37±1°С) обеспечивается с помощью контактного термометра (4). Внутрь стакана вводится сетчатая корзинка (5) с испытуемым препаратом. Вращение корзинки осуществляется от электромотора (6) через ступенчатые шкивы (7) ременной передачей. Привод укреплен на колонне (8), стоящей на основании (1). Привод прибора обеспечивает частоту вращения корзинок в пределах 50,100,150 и 200 мин–1.

Устройство прибора  «вращающаяся корзинка» типа 545-АК-7

Рис. 2.18. Устройство прибора «вращающаяся корзинка» типа 545-АК-7

Для работы на приборе в термостат заливается 2 дм3 воды, а также в стакан 1 дм3 жидкой среды (воды очищенной, искусственный желудочный или кишечный сок). Корзинка опускается в среду стакана так, чтобы расстояние до дна стакана было 20±2 мм. Скорость растворения активного вещества из таблетки или капсулы рассчитывается как среднее из шести, а в отдельных случаях из 12 определений. Изготовляет прибор Мариупольский завод технологического оборудования.

Средняя масса и отклонения в массе отдельных таблеток. 

Взвешивают 20 таблеток с точностью до 0,001 г и полученный результат делят на 20. Массу отдельных таблетокопределяют взвешиванием порознь 20 таблеток с точностью до 0,001 г, отклонение в массе отдельных таблеток (за исключением таблеток, покрытых оболочкой методом наращивания) допускается в следующих пределах:

·        для таблеток массой 0,1 г и менее ±10%;

·        массой более 0,1г и менее 0,3 г ±7,5%;

·        массой 0,3 и более ±5%;

·        масса отдельных покрытых таблеток, полученных методом наращивания, не должна отличаться от средней массы более чем на ±15%.

Только две таблетки могут иметь отклонения от средней массы, превышающие указанные пределы, но не более чем вдвое.

Определение содержания лекарственных веществ в таблетках. 

Берут навеску растертых таблеток (не менее 20 штук), для таблеток, покрытых оболочкой, испытания проводят из определенного числа таблеток, указанного в частных статьях. Отклонения в содержании лекарственных веществ должны составлять при дозировке лекарственных веществ до 0,001 г ±15%; от 0,001 до 0,01 ±10%; от 0,01до 0,1 ±7,5%; от 0,1 и более 2 ±5%, если нет других указаний в частных статьях.

Испытание однородности дозирования. 

Проводят для таблеток без оболочки с содержанием 0,05 г и менее лекарственного вещества и для таблеток, прокрытых оболочкой, с содержанием лекарственного вещества 0,01 г и менее. От серии, подлежащей испытанию, отбирают пробу таблеток в количестве 30 штук. В каждой из 10 таблеток определяют содержание лекарственного вещества. Содержание лекарственного вещества в одной таблетке может отклоняться не более чем на ± 15% от среднего содержания и ни в однойтаблетке не должно превышать ±25%. Если из 10 испытанных таблеток 2 таблетки имеют отклонения содержания лекарственного вещества более чем на ±15% от среднего, определяют содержание лекарственного вещества в каждой из оставшихся 20 таблеток. Отклонение в содержании лекарственного вещества ни в одной из 20 таблеток не должно превышать более чем ±15% от среднего.

Фасовка, упаковка и маркировка таблеток

Таблетки выпускаются в различной упаковке, рассчитанной на отдельных больных или лечебное учреждение. Применение оптимальной упаковки является основным путем предотвращения снижения качества таблетированных препаратов при хранении. Поэтому выбор вида упаковки и упаковочных материалов решается в каждом конкретном случае индивидуально в зависимости от физико-химических свойств входящих в состав таблеток веществ.

Одним из важнейших требований, предъявляемых к упаковочным материалам, является защита таблеток от воздействия света, атмосферной влаги, кислорода воздуха, микробной обсемененности.

Для упаковки таблеток в настоящее время используются такие традиционные упаковочные материалы, как бумага, картон, металл, стекло (картонные конвалюты, стеклянные пробирки, металлические пеналы, склянки на 50, 100, 200 и 500 таблеток, железные банки с впрессованной крышкой на 100-500 таблеток).

Наряду с традиционными материалами широко применяются пленочные упаковки из целлофана, полиэтилена, полистирола, полипропилена, поливинилхлорида и различных комбинированных пленок на их основе. Наиболее перспективны пленочные контурные упаковки, получаемые на основе комбинированных материалов методов термосваривания: безьячейковая (ленточная) и ячейковая (блистерная).

Для ленточной упаковки широко применяются в различных сочетаниях: ламинированная целлофановая лента, алюминиевая фольга, ламинированная бумага, полимерная пленка, ламинированная полиэстером или нейлоном. Упаковка получается термосвариванием двух совмещенных материалов. Такую упаковку осуществляют на специальных автоматах (А1-АУ3-Т и А1-АУ4-Т). Ячейковая упаковка состоит из двух основных элементов: пленки, из которой термоформованием получают ячейки, и термосвариваемой или самоприклеивающейся пленки, которой заклеивают ячейки после заполнения их таблетками. В качестве термоформируемой пленки чаще всего применяется жесткий (непластифицированный) или слабопластифицированный поливинилхлорид (ПВХ) толщиной 0,2-0,35 мм и более. Пленка ПВХ хорошо формуется и термосклеивается с различными материалами (фольгой, бумагой, картоном, покрытыми термолаковым слоем). Это наиболее распространенный материал, используемый для упаковки негигроскопичных таблеток.

Покрытие пленки из поливинилхлорида поливинилхлоридом или галогенированным этиленом уменьшает газо- и паропроницаемость: ламинирование поливинилхлорида полиэстером или нейлоном применяется для получения ячейковой упаковки, безопасной для детей.

Для гигроскопичных лекарственных препаратов рекомендуется использовать полипропилен, но он труднее поддается формованию, кроме того, он более жесткий, чем ПВХ. Полистирол также хорошо формуется, но из-за высокой влагопроницаемости применяется редко.

В качестве пленки, предназначенной для закрывания ячеек, чаще используют алюминиевую фольгу. С внутренней стороны она покрыта клеем или термосклеивающейся пленкой, с наружной – лаком. Алюминиевая фольга не проницаема для паров воды и газов, хорошо предохраняет препараты от проникновения запахов. Упаковка, имеющая в качестве одного из слоев алюминиевую фольгу, отличается меньшей проницаемостью, а состоящая целиком из алюминиевой фольги, обеспечит высокую герметичность.

Для помещения таблеток в блистерную упаковку используются отечественные автоматы 379 и 557, разработанные СПКБ «Медпром» и изготовляемые серийно Мариупольским заводом технологического оборудования, и автоматы «Servac 80», «Servac 160» фирмы «Hofliger-Harg» (ФРГ). В указанных аппаратах осуществлена технологическая схема непрерывного формования.

Термоформуемая пленка с рулона непрерывно сматывается и поступает на вращающийся барабан формования, где она разогревается инфракрасными излучателями до пластичного состояния и затем с помощью вакуума присасывается к ячейкам барабана, принимая необходимую форму. Далее пленка поступает на направляющий стол, где происходит загрузка ячеек пленки таблетками. Затем пленка сверху покрывается алюминиевой фольгой или бумагой, сматываемой с рулона и с помощью двух барабанов термосклейки – холодного, приводного и горячего, свободно вращающегося, склеивается с ней. Полученная лента с таблетками вырубается на вырубном штампе. Готовые упаковки по лотку сходят с автомата, а оставшаяся вырубленная лента сматывается в рулон, который затем удаляется из машины

Производительность автоматов 3600-9600 упаковок в час.

На все виды упаковок наносят следующие сведения: министерство, завод-изготовитель, наименование таблетированного препарата на русском и латинском языках, количествотаблеток, состав, номер серии и цену.

Коробку склеивают бандеролью из бумаги оберточной или лентой полиэтиленовой с липким слоем. На коробку наклеивают этикетку из бумаги этикеточной или писчей с обозначением товара, завода-изготовителя, номера серии, количество упаковок.

Коробки укладываются в контейнер или упаковывают в ящик фанерный или дощатый. Дно и стенки ящика выстилают бумагой оберточной, свободное пространство заполняют лигнином. В ящик вкладывают упаковочный лист.

 

 

 

Leave a Reply

Your email address will not be published. Required fields are marked *

Приєднуйся до нас!
Підписатись на новини:
Наші соц мережі