СПИРТОМЕТРИЯ.
РЕКУПЕРАЦИ ТА РЕКТИФИКАЦИЯ СПИРТА.
Рекуперация экстрагентов из отработанного сырья
В отработанном лекарственном растительном сырье (ЛРС) – шроте остается от 2-х до 3-х объемов экстрагента по отношению к массе сырья. Этот экстрагент обязательно рекуперируют, т.е. извлекают различными методами и возвращают в производство.
Если на фармацевтическом предприятии нет водяного пара, как теплоносителя (что часто бывает на фармацевтических фабриках), то рекуперацию этанола из шрота проводят методом вымывания водой. С целью уменьшения потерь экстрактивных веществ и экстрагента из шрота предварительно отжимают экстрагент на прессе и полученную вытяжку используют в соответствующем производственном процессе. Шрот после пресса заливают водой и настаивают в течение 1,5 ч. При этом этанол диффундирует из сырья в воду. После чего со скоростью перколяции получают промывные воды. Их количество зависит от концентрации экстрагента.
Так, для рекуперации 70% этанола получают около 5 объемов промывных вод по отношению к сырью, для 40% этанола получают около 3-х объемов. Эти промывные воды, содержащие 5-30% этанола могут быть использованы для разведения крепкого этанола при приготовлении экстрагента. Чаще промывные воды подвергают простой перегонке (рис. 1.4) с целью укрепления этанола. Промывные воды в емкости (1) нагревают до кипения электронагревателем (2), газом или любым другим доступным предприятию теплоносителем. Образующиеся пары спирта с водой поступают в конденсатор (3) из которого конденсат собирается в сборнике отгона (4). При этом получают отгон, содержащий до 88% спирта.
Рис. 1.4. Схема простой перегонки
На крупных фармацевтических заводах рекуперацию экстрагента из шрота проводят в перколяторах, после полного слива вытяжки, методом перегонки с водяным паром (Рис. 1.5). Для ускорения процесса рекуперации одновременно используют «глухой» и «острый» пар. «Глухой» пар подают в рубашку (1) перколятора (2) через штуцер (3). «Острый» пар поступает через нижний штуцер (4) и смешивается с сырьем (5). В результате такой подачи теплоносителя сырье быстро прогревается, этанол, содержащийся в сырье, закипает и удаляется из верхней части перколятора через патрубок (6) вместе с парами воды. Смесь паров спирта и воды направляется в теплообменник (7), из которого конденсат поступает в сборник отгона (8).
Полученный отгон используют как экстрагент если его концентрация соответствует требуемой. При других концентрациях отгон используют для приготовления экстрагента для сырья того же наименования, т.к. ароматические соединения сырья перегоняется вместе с этанолом. Рекуператы и отгоны, содержащие 30-40% этанола и выше могут быть укреплены и очищены ректификацией.
Рис. 1.5. Схема рекуперации экстрагента из шрота методом перегонки с водяным паром
Многие ошибочно считают, что ректификация это повторная перегонка. Поэтому хочу заострить ваше внимание на том, что ректификация – это совершенно иной по природе процесс. Процесс ректификации основан на взаимодействии потоков жидкости и пара.
При нагревании емкости со спиртосодержащей жидкостью (самогон), жидкость начинает кипеть. Образуются пары. Пары начинают подниматься по ректификационной колонне вверх и попадают в дефлегматор. Дефлегматор охлаждается водой. Пар, достигнув холодной поверхности дефлегматора, начинает конденсироваться. Сконденсировавшийся пар – флегма, стекает по стенкам дефлегматора и далее по колонне вниз. Колонна заполнена контактными элементаминасадкой. Поднимающийся вверх пар и стекающая вниз флегма начинают контактировать между собой на поверхности насадки, и происходит процесс тепломассобмена. В основу ректификации заложен непрерывный обмен между жидкостью и паром. При этом происходит многократная конденсация пара и испарение жидкости, на контактных элементах колонны. Жидкая фаза насыщается более высококипящим компонентом, а паровая фаза – более низкокипящим. Процесс тепломассообмена происходит по всей высоте колонны между стекающей вниз флегмой образующейся в дефлегматоре, и поднимающимся вверх паром из куба. В результате тепломассообмена между флегмой и паром в верхней части колонны накапливается самый легкокипящий компонент, что содержится в спиртосодержащей жидкости, часть которого затем отводится в конденсер для конденсации и виде дистиллята обирается в приемную емкость. Жидкость и пар в любой точке колонны находятся в состоянии фазового равновесия.
Принцип работы насадочной колонны проиллюстрирован на этой схеме.
Таким образом, весь этот процесс можно сформулировать в небольшом предложении.
Ректификация – это многократная перегонка дистиллята, осуществляемая в противоточных тарелочных или насадочных колоннах с контактными элементами (насадка, тарелки).
Для успешного взаимодействия флегмы, стекающей вниз по колонне, и пара, движущегося вверх, можно использовать любые контактные элементы, увеличивающие площадь и эффективность их взаимодействия. В качестве контактных элементов в больших ректификационных колоннах обычно используются тарелки. Каждая такая тарелка, расположенная в колонне, называется физической тарелкой (ФТ). Ее назначение – обеспечить быстрое достижение состояния равновесия между жидкой и паровой фазами. Тарелки работают следующим образом. Пар в виде пузырьков с развитой поверхностью пробулькивает через слой флегмы, находящейся на тарелке. В результате массообмен между фазами интенсифицируется. Однако, при проходе пара только через одну тарелку полное равновесие между фазами еще не достигается. Фактическое состояния паровой и жидкой фаз по отношению к их равновесному состоянию оценивается коэффициентом полезного действия тарелки. КПД классических тарелок составляет 50…60%. Т.е. для достижения состояния равновесия фаз, соответствующего одной теоретической тарелке, потребуется около двух физических. Таким образом, для реализации в ректификационной колонне 40 ТТ потребуется установить в ней порядка 80 физических тарелок классической конструкции.
Для домашних ректификационных колонн диаметром 30-50 мм эффективным контактным элементом является насадка, заполняющая собой весь внутренний объём колонны. При работе колонны вниз по контактному наполнителю стекает дистиллят, а вверх поднимается пар. В ректификационных колоннах промышленного изготовления используются насадки типа «Зульцер» из гофрированной нержавеющей сетки или спирально-призматические в виде мелких пружинок из нержавеющей проволоки. Тепломассообмен на таких контактных элементах проходит непрерывно по всей высоте колонны, а состояние фазового равновесия, эквивалентное одной теоретической тарелке (ТТ), наступает после преодоления паром некоторого слоя насадки, высоту которого называют высотой единицы переноса (ВЕП) или высотой теоретической тарелки (ВТТ). Эту высоту оценивают в миллиметрах, что позволяет рассчитывать высоту ректификационной части колонны. Поэтому в дальнейшем при изготовлении оборудования для домашней ректификации, речь пойдет в основном о колоннах диаметром от 30 до 50 мм, с использованием насадочных контактных элементов.
Теория ректификации
Ректификация — тепло массообменный процесс, который осуществляется в противоточных колонных аппаратах с контактными элементами (насадка, тарелки). В процессе ректификации происходит непрерывный обмен между жидкой и паровой фазой. Жидкая фаза обогащается более высококипящим компонентом, а паровая фаза — более низкокипящим. Процесс тепломассообмена происходит по всей высоте колонны между стекающим вниз дистиллятом, образующимся наверху колонны (флегмой), и поднимающимся вверх паром. Чтобы интенсифицировать процесс тепломассообмена применяют контактные элементы, увеличивающие поверхность взаимодействия фаз. В случае применения насадки, флегма стекает тонкой пленкой по ее развитой поверхности. В случае применения тарелок, пар в виде множества пузырьков, образующих развитую поверхность контакта, проходит через слой жидкости на тарелке.
Цель ректификации
Целью ректификации вообще является чёткое разделение жидких смесей на отдельные чистые компоненты. При ректификации спирта основная задача – из 40%-го СС получить СР с концентрацией в нем ЭС не менее 96% при минимальным содержании посторонних примесей. Для этого процесс ректификации СС проводят за один раз на специальном ректификационном оборудовании. Это оборудование позволяет разделять водно-спиртовую смесь на отдельные азеотропные фракции, отличающиеся температурами кипения. Одной из таких фракций является пищевой спирт-ректификат.
Оборудование для ректификации
В промышленности применяются ректификационные установки непрерывного действия. В этих установках 85%-ый СС и перегретый водяной пар смешиваются в нижней части колонны и превращаются в = 40%-ый водно-спиртовой насыщенный пар при температуре = 94’С (см. рис.1). Эта паровая смесь непрерывно поступает в ректификационную колонну, расслаивается по ее высоте на отдельные фракции, которые непрерывно и с определенным темпом отбираются из разных частей колонны. Для обеспечения нормальной работы таких непрерывных колонн требуются достаточно сложные и дорогие элементы автоматики.
В химических и физических лабораториях обычно применяют ректификационные колонны периодического действия, не требующие никакой автоматики. Эти колоны оборудованы только элементарными средствами регулировки отбора, температурного контроля и манометрическим измерителем перепада давления на колонне.
Принципиальная схема периодической ректификационной установки представлена на рис. справо, Установка состоит из испарительной емкости — куба 1 и ректификационной колонны, установленной вертикально на крышке куба. Куб заполнен перерабатываемой жидкостью 4, нагрев и испарение которой осуществляется нагревателем 5. Колонна включает в себя ректификационную часть 9 и головку колонны 10. Ректификационная часть колонны представляет собой трубу 11, покрытую снаружи теплоизоляцией 12 и заполненную внутри контактными элементами 13. Головка колонны представляет собой систему патрубков 3 к которой в соответствии со схемой подсоединены: термометр 6, конденсатор 2, охладитель 14 и регулятор отбора 15. Внизу ректификационной части колонны обычно монтируется манометрическая трубочка 16 для измерения перепада давления в колонне. Через охладитель 14 и конденсатор 2 постоянно протекает охлаждающая вода.
Работа ректификационной колонны.
Ректификационная установка работает следующим образом. С помощью нагревателя кубовая жидкость доводится до кипения. Образующийся в кубе пар по ректификационной части колонны 9 поднимается вверх и попадает в конденсатор 2, где происходит его полная конденсация. Часть этого конденсата (флегмы) возвращается в ректификационную часть колонны, а другая часть проходит через охладитель 14 и в виде дистиллята 7 стекает в приемную емкость 8. Соотношение между расходами флегмы и отбираемого дистиллята называется флегмовым числом и устанавливается с помощью регулятора отбора 15. По всей высоте ректификационной части колонны происходит процесс тепломассообмена между стекающей вниз флегмой и поднимающимся вверх паром. В результате этого в головке колонны накапливается в виде пара и флегмы самый легкокипящий (с наименьшей температурой кипения) компонент кубовой жидкости, а следом за ним сама собой выстраивается «номерная очередь» (вниз по высоте колонны ) из разных веществ. «Номером» в этой очереди является температура кипения каждого компонента, возрастающая по мере опускания по колонне. С помощью регулятора 15 осуществляется медленный и последовательный отбор этих веществ в соответствии с их очередностью. «Номер» отбираемого в каждый момент вещества регистрируется с помощью термометра 6. Зная эту температуру с учетом атмосферного давления, можно достаточно точно указать основное вещество дистиллята, отбираемое в данный момент времени. Для пояснения приведем простейший и наглядный пример лабораторной ректификации. Нальем в испарительную емкость ацетон (20мл), метиловый спирт (30мл), этиловый спирт (50мл) и воду (100мл). Общее количество кубовой жидкости составит 200мл. Проведем ректификацию с записью текущей температуры и текущего объема получаемого дистиллята 7. Общий объем отобранного дистиллята доведем до 120мл, при этом остаток кубовой жидкости (воды) составит 80мл. По записям построим график изменения температуры от текущего объема дистиллята рис.7. На графике отчетливо видны четыре горизонтальных участка а (tД=const) и три переходных участка р между ними. Участки а — это индивидуальные чистые компоненты исходной смеси, а переходные участки p — это промежуточные вещества, состоящие из смеси двух чистых соседних компонентов. Пусть процесс ректификации проходил при атмосферном давлении 760мм.рт.ст., ступеньки можно легко сделать вывод о качественном и количественном составе исходной смеси:
№ |
Индивидуальное вещество |
tк, Со |
Кол-во мл |
Кол-во, % |
1 |
ацетон |
56,2 |
20 |
16,7 |
2 |
метиловый спирт |
64,7 |
30 |
25,0 |
3 |
этиловый спирт |
78,1 |
50 |
41,7 |
4 |
вода |
100 |
20+80 |
16,7 |
В процессе ректификации каждые индивидуальные и промежуточные вещества можно отбирать в отдельные приемные емкости, что позволяет не только провести качественный и количественный анализ исходной смеси, но и получить все ее компоненты раздельно.
Что такое «теоретическая тарелка» и сколько их нужно.
Рассмотрим более внимательно кривую равновесия фаз бинарной водно-спиртовой смеси, представленную на рис.2. Как было указано в примере, можно из 10%-ro спиртового раствора с помощью простой перегонки получить 40%-ый раствор. Затем из 40%-го раствора тем же способом можно получить 60%-ый раствор. Легко построить на кривой равновесия фаз ряд последовательных ступенек 10-40; 40-60; 60-70; 70-75; и т.д. и убедиться в том, что для достижения в конечном дистилляте концентрации спирта, равной 96%, теоретически потребуется не менее 9…10 таких последовательных перегонок.
Каждая такая перегонка-ступенька условно называется теоретической тарелкой (ТТ). Количество ТТ физически означает количество перегонок, необходимых для получения 96%-го спирта из его 10%-го раствора чистого спирта в чистой воде.
Теоретическую тарелку иногда (а в настоящее время все чаще) называют единицей массопереноса или единицей переноса (ЕП).
На практике мы никогда не имеем чистой смеси спирта с водой (если это не хорошая водка). На практике, единственным источником спиртосодержащей жидкости для получения спирта-ректификата является бражка или самогон. Оба этих раствора кроме воды и спирта содержат в себе небольшое (по объему) количество примесей. Однако в этих примесях обнаружено порядка 70 разнообразных компонентов, температура кипения которых находится вблизи температуры кипения спирта-ректификата. Более того, многие из этих примесей с «большим удовольствием» образуют со спиртом и водой многокомпонентный азеотроп спирта-ректификата с ухудшенными вкусовыми свойствами.
Опыт показал, что для получения качественного спирта из указанных выше «первоисточников» необходимо иметь не менее 25…30 ТТ или, что одно и то же, – 25…30 ЕП. В ректификационных комплектах Пионер, собранных из отдельных модулей ректификационная часть колонны имеет не менее 40 ТТ.
Физическая тарелка и чем она отличается от теоретической.
В качестве контактных элементов в больших ректификационных колоннах обычно используются тарелки. Каждая такая тарелка, расположенная в колонне, называется физической тарелкой (ФТ). Назначение такой тарелки, как и любого другого контактного устройства, – обеспечить наиболее тесное соприкосновение жидкой и паровой фаз для максимального достижения состояния равновесия между ними.
Тарелки работают следующим образом. Пар в виде пузырьков с развитой поверхностью проходит через слой флегмы, находящейся на тарелке. В результате такого «пробулькивания», тепломассообмен между жидкой и паровой фазами интенсифицируется. Однако после прохода пара через одну тарелку равновесие между фазами не достигается. Мерой отличия состояния паровой и жидкостной фаз от их равновесного состояния является коэффициент полезного действия (КПД) тарелки.
У классических тарелок КПД составляет порядка 50-60%. Т.е. для достижения состояния равновесия фаз, соответствующего одной ТТ, потребуется около двух ФТ. Таким образом для реализации в ректификационной колонне 40 ТТ потребуется установить в ней порядка 80 ФТ классической конструкции.
Насадка и где в ней «теоретические тарелки».
Для успешного взаимодействия флегмы, стекающей вниз по колонне, и пара, движущегося вверх, можно использовать любые другие контактные элементы, увеличивающие площадь и эффективность этого взаимодействия.
Для ректификационных колонн сверхмалого диаметра (10-30мм) более эффективным, по сравнению с тарелкой, контактным элементом является насадка. Насадка заполняет собой весь внутренний объем ректификационной части колонны. Существует множество различных типов насадок, например, регулярные насадки — Спрейпак, Зульцер, Стедман; хаотичные (насыпные) — керамические кольца Лессинга, Паля, Берля, наиболее распространенная – проволочная спирально-призматическая насадка.
В ректификационных модулях Пионер используются насадка проволочная спирально-призматическая.
Процесс тепломассообмена на таких контактных элементах проходит непрерывно, а состояние фазового равновесия, эквивалентное одной ТТ, наступает после преодоления паром некоторой высоты насадки. И тогда обычно говорят о высоте слоя насадки, эквивалентного одной ТТ, т.е. для насадочных колонн обычно употребляют понятие — высота теоретической тарелки ВТТ или высота единицы переноса ВЕП ( в настоящее время употребляется чаще).
Эту высоту обычно оценивают в миллиметрах, что позволяет легко сравнивать эффективность той или иной насадки по ее ВЕП и рассчитывать высоту всей ректификационной части колонны. Так, например, при внутреннем диаметре колонны 30мм у спирально-призматической насадки ВЕП равна 20…25мм, а у насадки типа Зульцер ВЕП равна 15…20мм.
У насадок высота единицы переноса сильно зависит от диаметра колонны и стремительно увеличивается при его увеличении. Именно поэтому столь эффективные насадочные контактные элементы практически не применяются в больших промышленных ректификационных установках, а нашли свое применение исключительно в лабораторном оборудовании.
Внешний вид этого малоизвестно контактного элемента многими воспринимается как некоторый фильтр, который обязан иметь определенный срок службы в колонне. Однако это не так. Насадка – это тепло массообменный контактный наполнитель колонны, по которому вниз стекает чист ый дистиллят, а вверх поднимается чистый пар. Таким образом, если оба этих компонента действительно не имеют в себе посторонних включений (в колонну не попадает пена из кубовой жидкости), то этот «фильтр» выполняет свои функции тепломассообмена неограниченно долго внутри колонны.
Пропускная способность колонны. Захлебывание колонны.
Какие бы контактные элементы не применялись в колонне, схема работы ректификационной колонны остается неизменной — флегма течет вниз, а пар движется вверх.
При таком движении фаз существует некоторая предельная скорость пара, при которой гравитационные силы, обеспечивающие движение флегмы вниз, не в состоянии преодолеть встречный скоростной напор пара. Т.е. при увеличении скорости пара флегма сначала замедляет свою скорость течения вниз, а затем просто останавливается (повисает в колонне) и начинает накапливаться в ее ректификационной части. Происходит захлебывание колонны.
Захлебывание колонны является нерасчетным режимом ее работы. В таком состоянии колонна может находиться не более 30…60 секунд. За это время флегма сначала заполняет внутреннюю полость ректификационной части колонны, потом дефлегматор, а затем происходит ее аварийный выброс из колонны через верхний штуцер дефлегматора. Захлебывание колонны легко можно услышать как специфический «булькающий» шум в колонне.
Предельную скорость пара определяют сами контактные элементы, загромождающие внутреннее сечение колонны. У разных контактных элементов есть своя предельная скорость спиртового пара в полном сечении колонны, которая находится в диапазоне 0,5…1,2м/с. Это является и максимальной пропускной способностью колонны, которая обычно выражается массовым расходом пара (кг/час) через единицу площади полного сечения колонны (м’). Её величина для разных контактных элементов находится в диапазоне 2000…7000(кг/ч)/м.
Колонну с теми или иными контактными элементами можно «нагружать» и меньшим потоком пара. Однако, максимальная эффективность многих контактных элементов (КПД тарелки и ВЕП насадки) реализуется при работе колонны вблизи состояния захлебывания. Поэтому все ректификационные колонны проектируют на рабочий режим, максимально приближенный к предельной пропускной способности колонны.
Массовый расход паров спирта (при теплоте парообразования СР 925кДж/кг), проходящий через колонну, полностью определяется мощностью, подведенной к испарительной емкости. Так, например, при технологической мощности в 1кВт будет образовываться следующее количество паров спирта в единицу времени:
Мд= 1кВт\925кфж = 0,00108кг/с = 3,89кг\I час.
Поэтому на этапе ректификации колонна нагружается только той технологической мощностью (W,), которая указана в паспорте на Вашу установку. Если Вы увеличите подводимую мощность, Вы увеличите количество испаренного спирта, а, следовательно, увеличите скорость его паров по колонне. В результате произойдет захлебывание колонны со всеми вытекающими отсюда последствиями.
Стоит отметить, что захлебывание колонны может наступить и при номинальной (правильной) технологической мощности, подведенной к испарительной емкости. Существуют только три причины такому нестандартному поведению колонны.
Первая причина — это или засорение нижней части колонны пеной, например, от бражки или переполнение испарительной емкости перерабатываемой жидкостью. Это является прямым нарушение инструкции по эксплуатации, о заполнении испарительной емкости. Вторая причина – это повышенное напряжение в сети (более 230В), что приводит к увеличению тепловой мощности технологического ТЭНа. Третья причина – это сильное понижение атмосферного давления или попытка эксплуатации колонны в высокогорной местности. На эту причину стоит обратить особое внимание.
Атмосферное давление и устойчивая работа колонны.
Работа колонны рассчитана на внутреннее давление в колонне 720…780мм.рт.ст. А т.к. колонна обязательно имеет связь с атмосферой через верхний штуцер дефлегматора, то это давление является и оптимальным атмосферным давлением для ее работы. Разберёмся, как атмосферное давление может влиять на работу колонны и как управлять работой колонны в высокогорной местности. Как было указано в примере предыдущего раздела (о захлебывании колонны) I кВт тепловой мощности испаряет 3,89кг/час паров спирта. Этот массовый расход пара при нормальном давлении 760мм.рт.ст. (плотность паров спирта — 1,6кг/м3 ) соответствует вполне определенному объемному расходу — 2,43м3/ч, который через полное сечение колонны (например, d ЗО мм) проходит со скоростью 0,96м/с. Если атмосферное давление падает до 700мм.рт.ст., то плотность паров спирта уменьшается до 1,47кг/м3, объёмный расход пара возрастает до 2,64м3/ч, и, соответственно, увеличивается его скорость в полном сечении колонны до 1,04м/с. если эта скорость является предельной, то произойдет захлебывание колонны.
При увеличении атмосферного давления наоборот происходит уменьшение скорости спиртовых паров, что несколько снижает эффективность разделения колонны, но это легко компенсируется регулировкой флегмового числа (см. ниже).
При проектировании колонн закладываются определенные «запасы» в ее инструкцию для обеспечения устойчивой и оптимальной работы колонны с учетом точности изготовления контактных элементов, технологических ТЭНов разбросов их мощности) возможного изменения атмосферного давления и прочее. Однако каждая ректификационная колонна обладает некоторой индивидуальностью и «норовом» , которые Вам необходимо почувствовать и правильно использовать.
Если порог захлебывания по атмосферному давлению Вашего конкретного экземпляра колонны лежит существенно ниже минимально- возможного давления в Вашей местности, Вы можете никогда не столкнуться с этой проблемой. Если такое будет изредка происходить, то можно рекомендовать Вам не проводить ректификацию в дни очень низкого атмосферного давления.
Если эксплуатация ректификационной колонны будет происходить только в высокогорной местности, то необходимо использовать ЛИТР (лабораторный автотрансформатор регулируемый) или любой другой регулятор напряжения для управления темпом испарения кубовой жидкости.
Перепад давления в колонне и как его измерять.
При расчетном режиме работы колонны внутренние контактные элементы оказывают расчетное сопротивление движению паров спирта по колонне. Т.е. в нижней части колонны давление выше, чем в верхней ее части (дефлегматоре). А поскольку давление в дефлегматоре равно атмосферному, то обычно говорят о перепаде давления на колонне Р. Величину этого Р (сопротивления) легко наблюдать по высоте столба жидкости в специальной манометрической трубочке, расположенной в нижней части колонны (см. рис.б). Если колонна не работает, то жидкость в этой трубочке находится на нижнем уровне. Стоит вывести колонну на рабочий режим, давление внизу колонны возрастет, и столбик жидкости, уравновешивая перепад Р, поднимется на определенную высоту Н, связанную с перепадом соотношением Р = р8Н (где: р — плотность жидкости, я = 9.81м/с’). При нормальной работе колонны столбик жидкости должен находится на определенной и постоянной высоте Н.
Если на фармацевтическом предприятии нет водяного пара, как теплоносителя (что часто бывает на фармацевтических фабриках), то рекуперацию этанола из шрота проводят методом вымывания водой. С целью уменьшения потерь экстрактивных веществ и экстрагента из шрота предварительно отжимают экстрагент на прессе и полученную вытяжку используют в соответствующем производственном процессе. Шрот после пресса заливают водой и настаивают в течение 1,5 ч. При этом этанол диффундирует из сырья в воду. После чего со скоростью перколяции получают промывные воды. Их количество зависит от концентрации экстрагента.
Так, для рекуперации 70% этанола получают около 5 объемов промывных вод по отношению к сырью, для 40% этанола получают около 3-х объемов. Эти промывные воды, содержащие 5-30% этанола могут быть использованы для разведения крепкого этанола при приготовлении экстрагента. Чаще промывные воды подвергают простой перегонке (рис. 1.4) с целью укрепления этанола. Промывные воды в емкости (1) нагревают до кипения электронагревателем (2), газом или любым другим доступным предприятию теплоносителем. Образующиеся пары спирта с водой поступают в конденсатор (3) из которого конденсат собирается в сборнике отгона (4). При этом получают отгон, содержащий до 88% спирта.
Если на фармацевтическом предприятии нет водяного пара, как теплоносителя (что часто бывает на фармацевтических фабриках), то рекуперацию этанола из шрота проводят методом вымывания водой. С целью уменьшения потерь экстрактивных веществ и экстрагента из шрота предварительно отжимают экстрагент на прессе и полученную вытяжку используют в соответствующем производственном процессе. Шрот после пресса заливают водой и настаивают в течение 1,5 ч. При этом этанол диффундирует из сырья в воду. После чего со скоростью перколяции получают промывные воды. Их количество зависит от концентрации экстрагента.
Так, для рекуперации 70% этанола получают около 5 объемов промывных вод по отношению к сырью, для 40% этанола получают около 3-х объемов. Эти промывные воды, содержащие 5-30% этанола могут быть использованы для разведения крепкого этанола при приготовлении экстрагента. Чаще промывные воды подвергают простой перегонке (рис. 1.4) с целью укрепления этанола. Промывные воды в емкости (1) нагревают до кипения электронагревателем (2), газом или любым другим доступным предприятию теплоносителем. Образующиеся пары спирта с водой поступают в конденсатор (3) из которого конденсат собирается в сборнике отгона (4). При этом получают отгон, содержащий до 88% спирта.
Растворители и экстрагенты.
Изготовление лекарственных препаратов связано с применением различных жидкостей, необходимых для растворения или извлечения фармакологически активных веществ. В зависимости от назначения эти жидкие вещества могут быть растворителями или экстрагентами. Под растворителями подразделяют индивидуальные химические соединения или смеси, способные растворять различные вещества, т.е. образовывавшие однородные системы – растворы, состоящие из 2-х и более числа компонентов. К растворителям относятся вещества, обладающие свойствами: 1) обладающие активной растворимостью; 2) неагрессивны к растворяемому веществу и аппаратуре; 3) отличающиеся минимальной токсичностью и огнеопасностью; 4) доступны и дешевы. Под экстрагентами подразделяют растворители, использованные при экстракции растительного или биологического материала либо при экстракции из жидкостей тех или иных ценных веществ. К растворителям, используемых в качестве экстрагентов, предъявляются дополнительные требования:
1) избирательная (селективная) растворимость; 2) высокие диффузионные способности, обеспечивающие хорошее проникновение его черз поры частичек растительного материала и стенки клеток; 3) способность препятствовать развитию в вытяжке микрофлоры; 4) летучесть, по возможности низкая температура кипения, легкая регенерируемость. Все растворители и экстрагенты подразделяются на неорганические и органические. Из класса неорганических соединений наибольшее значение имеет вода. Схему получения и очистки воды для фармацевтических производств рассмотрено ниже. Сейчас ознакомимся с самыми распространенными растворителями и экстрагентами.
Этиловый спирт – в фармацевтической промышленности применяется спирт, получаемый путем сбраживания крахмалсодержащего сырья – в основном картофеля. Сброженное сусло – бражка – содержит 8 – 10% спирта.
Путем перегонки из нее получается спиртовой сырец, содержащий до 88% спирта. В спирте – сырце всегда содержатся примеси – 0,3 – 0,4%, которые ухудшают вкусовые качества спирта, придают ему неприятный запах и которые очень вредны для здоровья человека. К ним относятся летучие органические кислоты (уксусная, молочная, масляная); сивушные масла (высшие спирты – пропил, изобутил); эфиры (уксусно-этиловый, масляно-этиловый) и альдегиды (уксусный и др.). В связи с этим спирт – сырец подвергается многократной перегонки называемой ректификацией, в результате которой содержание примесей уменьшается в 300 раз. При этом дополнительно происходит укрепление спирта до 95 – 96%. В ректификационной колонне сначала удаляются головные, т.е. легко кипящие примеси (кислоты, эфиры и альдегиды). В процессе ректификации часть конд-ти из дефлегматора (флегма) отводится обратно в аппарат, чтобы, находясь в контакте с парами спирта, способствуют его укреплению. Высококипящие сивушные масла остаются в «хвостовых» примесях.
Свойства спирта как растворителя и экстрагента:
1. Является хорошим растворителем алкалоидов, гликозидов, эфирных масел, смол и др. веществ, которые в воде растворяются плохо.
2. Значительно труднее, чем вода, проникает через стенки клеток (отнимая воду и белков, спирт превращает их в осадки, закупоривавших поры клеток и таким образом ухудшается диффузия) чем ниже концентрация спирта, тем легче он проникает внутрь клеток.
3. Чем крепче спирт, тем менее возможен гидрометич. процесс. Спирт инактивирует ферменты.
4. Является бактерицидной средой. В растворах, содержащих ? 20% спирта, не развиваются ни микроорганизмы, ни плесени.
5. Спирт фармакологически неиндифферентен. Он оказывает как местное, так и общее действие, что необходимо учитывать при производстве извлечений.
6. Спирт достаточно летуч и спиртовое извлечение легко сгущается до густых жидкостей и порошкообразных веществ. Выпаривание и сушка – под вакуумом.
7. Спирт огнеопасен.
8. Спирт является лимитирующим продуктом.
Крепость спирта выражается весовых или объемных процентах. Под крепостью понимаются % содержания б/в (абсолютного) спирта в дал. растворе. Объем спиртоводного раствора изменяется в зависимости от температуры, крепость его в объемных процентах относят к t=20?C.
плотность б/в спирта (0,78927).
При смешивании спирта с водой выделяется тепло и температура смеси повышается. Наибольшая теплота – при получении 30 вес. % спирта.
Кроме того, при смешивании воды и спирта наблюдается явлении контракции, заключающееся в уменьшении объема смеси против арифметической суммы исходных веществ: 50 л спирта + 50 л воды = 96,4 л смеси (чтобы получилось 100 л 54% об. спирта нужно взять 54 л спирта и 49,679 л воды). Поэтому разработаны таблицы для разведения спирта (приложение к ГФ Х).
Другие растворители и экстрагенты:
1. метиловый или древесный спирт(СН3ОН). Получается синтетически. По запаху напоминает этиловый. Сильный яд: доза 15 – 20 мл смертельна. Смешивают с водой.
2. Изопропиловый спирт (СН3 СН(ОН) СН3). Ядовит. Образующая смесь с водой, содержит 12,3% воды.
3. Глицерин (СН2ОН СНОН СН2ОН). Смешивают с водой и спиртом, не растворим в эфире и жирных маслах. Входит в состав извлекаемых смесей, самостоятельно не используется.
4. Ацетон (СН3СОСН3). Смешивается с водой и органическими растворами.
5. Уксусная кислота (СН3СООН).Используется б/в и водные растворы. Б/в при температуре <16,6?C застывает в кристаллы, похожие на лед. Смешивается с водой, спиртом, эфиром и другими растворителями.
6. Этиловый эфир (С2Н5ОС2Н5). Растворяется в 12 частях воды. Смешивается со спиртом, хлороформом, петролейным эфиром и др.
7. Бензины (смесь углеводородов). Важное свойство – быстро улетучиваются , очень огнеопасны.
8. Хлороформ (СНСI3). Смешивается со спиртом, эфиром, бензином. Трудно растворяется в воде (1:200).
9. Дихлорэтан (СН2СI СН2СI ). Смешивается со спиртом, эфиром. При вдыхании паров – отравление. Малоогнеопасен.
10. Четыреххлористый углерод (ССI4). Неогнеопасен.
11. Масла растительные – персиковое, миндальное, подсолнечное. Смешиваются с эфиром, хлороформом, бензином, не смешиваются со спиртом и водой. Свойство – прогоркают, повышается кислотное число.
ВОДА.
Вода дистиллированная (Aqua destillata)
До сих пор вы имели дело с водой дистиллированной при проведении лабораторных занятий. Качество ее регламентируется ГФ ХI . Она должна быть бесцветной, прозрачной, без запаха и вкуса, значение рН в пределах 5,0 – 6,8, сухой остаток не должен превышать 0,001% (т.е. 1 мг в 100 мл), в ней должно отсутствовать нитраты, нитриты, хлориды, сульфаты, кальций, тяжелые металлы, углерода диоксид, допускаются следы аммиака (0,00002%). Общий принцип получения воды дистиллированной заключается в следующем. Питьевую воду или воду, прошедшую в/п, помещают в дистиллятор, состоящий из 3-х основных узлов: испарителя, конденсатора и сборника. Испаритель с водой нагревают до кипения. Пары воды поступают в конденсатор, где они сжижаются и в виде дистиллята поступают в сборник. Все нелетучие примеси, находящиеся в исходной воде, остаются в дистилляторе. По способности нагрева дистилляторы делятся на электрические и паровые. Известны дистилляторы электрические непрерывного действия марки ДЭ-1 и ДЭ-25. Один из них Q = 4 л/ч работает в одной из лабораторий.
Вода деминерализованная (Aqua deminevalisata).
В последнее время уделяют внимание использованию воды деминерализованной вместо дистиллированной. Это связано с тем, что электрические дистилляторы часто выходят из строя. Высокое содержание солей в исходной воде приводит к образованию накипи на стенках испарителя, что ухудшает условие дистилляции и снижает качество воды. Для обессоливания воды применяется различные установки. Принцип их действия основан на том, что вода освобождается от солей при пропускании ее через ионно-обменные смолы. Основной частью таких установок являются колонки, заполненные катионитами и анионитами. Активность катионитов определяется наличием карбоксильной или сульфоновой группами, обладающие способностью обменивать ионы Н+ на ионы щелочных и щелочноземельных металлов. Аниониты – чаще всего продукты полим-и аминов с формальдегидом, обменивают свои гидроксильные группы ОН на анионы. Установки также имеют емкости для растворов кислоты, щелочи и воды дистиллированной для регенерации смол.
Очищенная и апирогенная вода.
Однако сегодня в фармацевтической промышленности используется только вода очищенная (ФС42-2619-89) и вода для инъекций. (ФС42-2620-89).
На примере устройства и работы установки «Джерело – 500» ознакомимся с типовой схемой очистки воды.
Принцип работы установки основан на методе обратного осмоса, т.е. фильтрации жидкости с малой концентрацией растворенных веществ через полупроницаемые мембраны рулонного о-о элементов (ЭРО) под воздействием избыточного давления жидкости. При этом из пермеата снимается 98% растворенных солей. Остаток соли снимается при помощи и-о фильтров.
Установка состоит из о-о блока и блока доводки воды (возможно включение в схему блока в/п). Описание схемы: Исходная вода за счет давления в сети подается на вход фильтра Ф1 (задерживаемая способность 20 мкм) и далее в фильтр Ф2 (задерживаемая способность 5 мкм). Из фильтра Ф2 поступает на насос высокого давления для подачи в последовательно соединенные о-о аппараты (ЭРО). Очищенная вода (пермиат) отбирается из о-о аппаратов и поступает в блок доводки воды, где последовательно проходит через к –о фильтр Ф3, а-о фильтр Ф4 и фильтры финишная очистки Ф5 и Ф6 с задерживаемой способностью 5 мкм и 0,22 мкм соответственно. К-КУ-2-8(Н+); А-АВ-17-8(ОН-). В процессе очистки из воды удаляются: – Fe; (фильтр грубой очистки) – соли; обратный осмос, и-о- микроорганизмы; – пирогены. (мембраны 5 мкм и 0,22 мкм) Сборники для химической очистки ЭРО, регенерация Ф3 иФ4 . Кириши – УОВ и УВВ. УВВ-500. 1. Блок предподготовки – фильтр с пределом задержания 5 мкм. Zn – 80%; Мn – от 50 до 96%; Fe от 60 до 95%; цезий и стронций – 99%% фенол – 65%; хлорорганика – 85%; аммиак – 35%; нитриты – 58%; нитраты – 80%; бактерии – 95%; диоксин – 99%.2. О-о установкаСоли 90 – 95%; полное удаление по п.1. 3. Блок финишной очистки Выходит сверхчистая вода.