Тема 11. Алкиламини. Малый практикум.
Тема 12. Ариламини. Антраниловая кислота и ее производные. Понятие о кислотно-основных свойствах.
План
Амины:
1. Определение, классификация, номенклатура и изомерия аминов.
2. Способы получения алифатических аминов.
3. Способы добычи ариламинив : возобновление нитроаренив (реакция Зинина); взаимодействие галогенаренив с аммиаком и аминами; алкилування первичных аминов.
4. Сравнительная характеристика физических свойств аминов и их солей.
5. Химические свойства аминов :
– кислотно-основные свойства и их зависимость от электронных эффектов заместителей при атоме нитрогена в ряду аминов;
– солеобразование с разными кислотами и обратное превращение солей в основы аминов;
– нуклеофильний характер аминогруппы;
– алкилювання, ацилювання и N -галогенування аминов;
– реакции первичных, вторичных и третичных аминов с нитритной кислотой;
– взаимодействие с ароматическими альдегидами (образование основ Шифа);
– реакции ароматических аминов при участии ароматического ядра: галогенування, нитрирование, сульфирование;
– окисает аминов.
6. Антраниловая кислота и ее производные.
7. Диамини: получение и свойства.
8. Отдельные представители, применения.
9. Идентификация аминов. Изонитрильна проба. Выявление аминогруппы за ИЧ- и УФ-спектрами.
Понятие о кислотно-основных свойствах.
10. Электролитическая и протонная теории кислот и основ. Определение понятий “кислота” и “основа” согласно теории Бренстеда-Лоури.
11. Типы органических основ (оксонии, аммонию, сульфонии, p -основи).
12. Факторы, которые влияют на силу основ.
13. Электронная теория кислот и основ (теория Льюїса).
14. Принцип жестких и мягких кислот и основ (ЖМКО, Р. Пирсон, 1963).
АМИНЫ
План
1. Классификация, изомерия, номенклатура.
3. Енамины.
Амины можно рассматривать как производные аммиака, в котором атомы водорода замещены на углеводородные радикалы.
1. Классификация, изомерия, номенклатура
В зависимости от числа углеводородных радикалов, связанных с атомом азота, различают первичные, вторичные и третичные амины, а также четвертичные аммониевые соли.
RNH2 |
RR/NH |
RR/R//N |
RR/R// R///N+X– |
первичные амины |
вторичные амины |
третичные амины |
четвертичные аммониевые соли |
По типу гибридизации атома углерода, связанного с азотом выделяют следующие группы аминов.
1. Соединения со связью .
К этой группе относятся алкиламины, а также алкенил- и алкиниламины, в которых кратная связь удалена от атома азота. Их объединяют под названием алифатические амины. В состав этой группы входят также циклические амины, содержащие атом азота в цикле, которые являются гетероциклическими соединениями.
2. Соединения со связью .
К этой группе принадлежат производные алкенов с атомом азота у атома углерода, образующего двойную связь – енамины (виниламины) и амины, содержащие атом азота, связанный с ароматическим кольцом – ароматическиеамины (ариламины).
Названия аминов образуют, добавляя к слову амин названия связанных с атомом азота углеводородных радикалов.
В другом варианте номенклатуры за основу названия принимают название родоначальной структуры (самой длинной углеродной цепи, непосредственно связанной с атомом азота) с добавлением суффикса “амин”.
В этом случае вторичные и третичные амины называют как N-замещенные производные первичных аминов.
Если молекула содержит другие функциональные группы, обозначаемые в суффиксе, то аминогруппу обозначают префиксом “амино”.
Названия диаминов образуют от названий соответствующих двухвалентных радикалов или названия родоначальной структуры с добавлением суффикса “диамин”.
Многие ароматические амины имеют тривиальные названия.
Циклические амины называют, используя номенклатуру гетероциклических соединений или, добавляя к названию двухвалентного углеводородного радикала суффикс “имин”.
Для аминов характерна изометрия углеродного скелета, изомерия положения аминогруппы и изомерия между первичными, вторичными и третичными аминами.
2. Алифатические амины
2.1. Методы получения.
1) Алкилирование аммиака и аминов.
Аммиак взаимодействуют с алкилгалогенидами RX и другими алкилирующими реагентами (алкилсульфатами, диалкилсульфатами) с образованием на первой стадии соли алкиламмония, которая в равновесной реакции с избытком аммиака дает алкиламин. Алкиламин далее вступает в реакцию c алкилгалогенидом с образованием продукта диалкилирования и т.д. Таким образом последовательно образуются триалкиламин и соль тетраалкиламмония.
Реакция используется в основном для синтеза третичных аминов и тетраалкиламмониевых солей, так как первичные и вторичные амины, будучи более сильными нуклеофилами, чем аммиак, реагируют далее, сами предпочтительно атакуя субстрат. Приемлемые выходы первичных аминов получают при использовании большого избытка аммиака, а вторичных аминов – при большом избытке первичного амина.
Спирты алкилируют аммиак и амины в присутствии катализаторов дегидратации (Al2O3, SiO2) при 300-5000C. В этом случае также образуется смесь продуктов моно-, ди- и триалкилирования.
Метод используется для получения низших алифатических аминов в промышленности.
2) Синтез первичных аминов по Габриэлю
Алкилирование фталимида калия алкилгалогенидами с последующим щелочным гидролизом или гидразинолизом N-алкилфталимида позволяет получать первичные амины без примеси вторичных и третичных. Лучше использовать протекающий в мягких условиях гидразинолиз, приводящий к образованию не растворимого в реакционной среде циклического гидразида.
3) Восстановление азотсодержащих органических соединений.
Нитрилы при восстановлении дают первичные амины. В промышленности процесс осуществляют путем каталитического гидрирования.
В препаративных целях используют восстановление алюмогидридом лития.
Введение цианогруппы (например, путем нуклеофильного замещения) и ее восстановление – синтетический прием, позволяющий нарастить углеродную цепь на один атом С.
Амиды карбоновых кислот восстанавливаются до аминов алюмогидридом лития. Из соответствующих амидов могут быть получены первичные, вторичные и третичные амины.
Восстановление азотсодержащих производных альдегидов и кетонов – оксимов и гидразонов – дает возможность превращения карбонильных соединений в первичные амины.
Для восстановления используют каталитическое гидрирование, комплексные гидриды металлов (LiAlH4).
Нитросоединения могут быть восстановлены до первичных аминов.
В качестве восстановителей чаще всего используют металл (Fe, Zn, Sn) и кислоту; алюмогидрид лития. В алифатическом ряду метод не находит широкого применения из-за ограниченной доступности алифатических нитросоединений по сравнению с ароматическими.
Восстановление азидов дает первичные амины.
Исходные азиды легко могут быть получены из алкилгалогенидов или сульфонатов путем нуклеофильного замещения.
4) Восстановительное аминирование карбонильных соединений.
Взаимодействие альдегидов и кетонов с аммиаком в присутствии восстановителя приводит к первичным аминам.
При использовании вместо аммиака первичного амина продуктом реакции будет вторичный амин.
Процесс протекает через промежуточное образование имина с его последующим восстановлением в амин.
Восстановительное аминирование с использованием в качестве восстановителя муравьиной кислоты называют реакцией Лейкарта-Валлаха. В качестве реагентов можно использовать формиат аммония или соответствующие соли аминов.
5) Синтез аминов путем перегруппировок.
Перегруппировка Гофмана:
RCONH2 + Br2 + 2NaOH ® RNH2 + 2NaBr + CO2 + H2O
Перегруппировка Курциуса:
Реакции подробно рассмотрены ранее (см. лек. №36) В результате образуются первичные амины без примеси вторичных и третичных. При этом происходит укорочение углеродной цепи на один атом С.
2.2. Физические свойства и строение
Алифатические амины – бесцветные вещества с неприятным запахом. Низшие амины – жидкости, хорошо растворимые в воде. По растворимости они превосходят спирты с близкой молекулярной массой. Это объясняется образованием между амином и водой водородных связей типа , прочность которых сравнительно велика в силу высокой основности атома азота. Температуры кипения и плавления у третичных аминов ниже, чем у первичных и вторичных с примерно одинаковой молекулярной массой, что связано с ассоциацией последних за счет образования межмолекулярных водородных связей.
Однако эти межмолекулярные водородные связи слабее, чем у спиртов, по причине меньшей полярности связи N-Н по сравнению со связью О-Н. Вследствие этого амины имеют более низкие температуры кипения, чем спирты с близкой молекулярной массой.
Амины имеют пирамидальное строение. Величины углов R-N-R близки к тетраэдрическому – 106-1080. Считается, что атом азота находится в состоянии sp3-гибридизации, а четвертым лигандом является неподелённая пара электронов (“фантом”-лиганд).
Третичные амины с разными углеводородными радикалами должны быть хиральными, так как их молекулы не имеют плоскости симметрии. Однако за счет быстрой пирамидальной инверсии, которая представляет собой акт рацемизации, их невозможно выделить или зафиксировать в оптически активной форме.
Четвертичные аммониевые соли в случае разных заместителей существуют в виде пары устойчивых энантиомеров.
Спектральные характеристики.
В электронных спектрах аминов наблюдается поглощение в дальней УФ-области при 195-215 нм, что соответствует возбуждению неподеленной пары электронов азота (переход n® s* ).
В ИК-спектрах первичных и вторичных аминов наблюдаются полосы поглощения, связанные с валентными колебаниями связей N-H. Первичные амины характеризуются двумя полосами поглощения при ~3400 и ~3500 см-1, вторичные амины – одной полосой при ~3500 см-1.
В спектрах ПМР химический сдвиг протонов связи N-H находится в области 1-5 м.д. и значительно меняется в зависимости от концентрации, температуры и растворителя.
2.3. Химические свойства
Химическое поведение аминов определяется в основном наличием свободной пары электронов у атома азота, которая обусловливает их основные и нуклеофильные свойства. Реакции с участием связей N-H и N-C под действием оснований и нуклеофильных реагентов для аминов менее характерны.
Основные свойства
Алифатические амины являются одними из самых сильных незаряженных оснований (~ 10 – 11). Их водные растворы имеют щелочную реакцию.
R3N + H2O = R3NH+ + OH –
С неорганическими кислотами амины образуют соли, которые в большинстве случаев хорошо растворимы в воде.
R3N + HX = R3N+X –
Основность аминов зависит от их строения и природы растворителя. Сравнение основности в водных растворах показывает, что алкиламины являются более сильными основаниями, чем аммиак. Вторичные амины превосходят по основности первичные. Такой ряд основности согласуется с электронодонорным влиянием алкильных групп (+I-эффект), которое способствует делокализации положительного заряда в сопряженной кислоте (ионе аммония) и тем самым стабилизирует её в большей степени, чем свободный амин. Однако это не объясняет уменьшения основности при переходе от вторичных аминов к третичным.
|
NH3 |
C2H5NH2 |
(C2H5)2NH |
(C2H5)3N |
|
9,25 |
10,80 |
11,09 |
10,85 |
Вероятно, такое снижение основности связано с сольватацией. Сольватация молекулами воды триалкиламмониевого катиона затруднена присутствием трех гидрофобных алкильных групп и снижением возможности образования водородных связей.
Это предположение подтверждается тем, что в газовой фазе и в малополярных растворителях третичные амины превосходят по основности вторичные.
Нуклеофильные свойства
а) Алкилирование
Примеры реакций алкилирования обсуждались при рассмотрении методов получения аминов.
б) Ацилирование
2RNH2 + R/COX ® R/CONHR + RNH3X
2R2NH + R/COX ® R/CONR2 + R2NH2X
(X=Cl, OCOR/)
Ацилирование аминов функциональными производными карбоновых кислот дает возможность получать вторичные и третичные амиды из первичных и вторичных аминов соответственно. Реакция подробно обсуждена ранее (лекция №36).
в) Взаимодействие с сульфонилхлоридами
Сульфонилхлориды взаимодействуют с аминами, давая сульфонамиды. Реакция с бензолсульфонилхлоридом лежит в основе пробы Гинсберга, позволяющей различать и разделять первичные, вторичные и третичные амины.
Сульфонамиды, образующиеся из первичных аминов, являются NH-кислотами и со щелочами дают растворимые в воде соли.
Вторичные амины дают сульфонамиды, которые не содержат кислого водорода и не растворяются в щелочах.
Третичные амины не реагируют.
г) Нитрозирование
Нитрозирование аминов происходит при взаимодействии с азотистой кислотой в кислой среде. Неустойчивую азотистую кислоту генерируют действием сильной кислоты на нитриты. Реакция протекает по-разному в зависимости от типа амина.
Первичные алифатические амины реагируют с образованием неустойчивых алкилдиазониевых солей, которые разлагаются с выделением газообразного азота и сложной смеси продуктов дезаминирования.
Образование солей диазония – сложный многостадийный процесс, который подробно будет рассмотрен на примере ароматических аминов.
Разложение катиона алкилдиазония приводит к образованию карбокатиона, который стабилизируется путем алкилирования присутствующих в реакционной среде нуклеофилов или путем отщепления протона с образованием алкена. Этим процессам может предшествовать изомеризация карбокатиона в энергетически более стабильный ион. Так, разложение катиона н-пропилдиазония в водном растворе наряду н-пропиловым спиртом дает изопропиловый спирт, а также продукт элиминирования – пропен.
Со вторичными аминами азотистая кислота образует нерастворимые в реакционной среде нитрозамины.
R2NH + NaNO2 + HCl ® R2N-N=O + NaCl + H2O
Третичные амины в сильнокислой среде при комнатной температуре с азотистой кислотой не реагируют.
Нитрозирование аминов препаративного значения не имеет. Аналитическое значение этих реакций заключается в возможности качественно различить первичные, вторичные и третичные амины.
д) Галогенирование
Первичные и вторичные амины реагируют с гипогалогенитами с образованием N-галогенаминов.
(X= Cl, Br)
N-галогенамины – сильные окислители и галогенирующие реагенты.
Окисление
Амины дают разнообразные продукты окисления, состав которых зависит от природы окислителя и строения амина.
Перекись водорода и надкислоты окисляют третичные амины до N-оксидов.
R3N + HOOH ® R3N+-O– + H2O
В случае первичных и вторичных аминов первоначально образующиеся N-оксиды перегруппировываются в производные гидроксиламина.
Такое окисление протекает сложно, так как гидроксиламины сами легко окисляются. В случае первичных аминов конечными продуктами окисления являются нитросоединения, например:
Первичные амины, в которых аминогруппа соединена с третичным атомом углерода, окисляются в нитросоединения перманганатом калия в водном ацетоне.
Амины, содержащие атомы водорода в a -положении, при действии сильных окислителей (KMnO4) дают смесь веществ, в которой преобладают карбонильные соединения. Процесс протекает через промежуточное образование иминов, которые при гидролизе дают альдегиды или кетоны.
(R=Alk; R/=H, Alk)
Кислотные свойства
Первичные и вторичные алифатические амины являются очень слабыми NH-кислотами (pKа~33-35). Их кислотные свойства проявляются при действии щелочных металлов или таких сильных основания, как металлоорганические соединения.
Образующиеся алкил- и диалкиламиды металлов – очень сильные основания. Диалкиламиды, содержащие вторичные или третичные алкильные радикалы (например, диизопропиламид лития), представляют интерес для органического синтеза как ненуклеофильные основания. Будучи сильными основаниями, они обладают низкой нуклеофильностью по причине стерических затруднений, возникающих при атаке электрофильных центров за исключением протона. Их используют в органическом синтезе для отрыва протона и генерирования карбанионов.
Расщепление гидроксидов тетраалкиламмония по Гофману
Гидроксиды тетраалкиламмония получают действием на галогениды оксида серебра.
2R4N+Br– + Ag2O + H2O ® 2R4N+OH– + 2AgBr
В растворах гидроксиды тетраалкиламмония полностью ионизированы и являются столь же сильными основаниями, как гидроксиды натрия и калия. При нагревании они претерпевают элиминирование с образованием алкена триалкиламина и воды.
RCH2CH2(CH3)3N+OH–® RCH=CH2 + (CH3)3N + H2O
При наличии в молекуле нескольких b -водородных атомов процесс протекает в направлении образования наименее замещенного алкена (по правилу Гофмана).
Причина такой ориентации при отщеплении состоит в карбанионном характере переходного состояния, что способствует отщеплению наиболее кислого протона.
При протекании процесса по механизму Е2 с “Е1СВ-подобным” переходным состоянием на атоме углерода возникает частичный отрицательный заряд. Переходное состояние (I), предшествующее образованию продукта по правилу Зайцева, оказывается дестабилизированным за счет +I-эффекта алкильных групп. В результате процесс преимущественно направляется через наименее дестабилизированное переходное состояние (II), ведущее к продукту элиминирования по Гофману.
3. Енамины
Енамины (виниламины) устойчивы в том случае, если при атоме азота нет атомов водорода. Такие енамины можно рассматривать как азотистые аналоги виниловых эфиров. В противном случае енамины нестабильны и перегруппировываются в имины, подобно тому, как енолы изомеризуются в карбонильные соединения.
3.1. Методы получения
Основной метод получения енаминов – взаимодействие карбонильных соединений со вторичными аминами в присутствии кислотных катализаторов и средств, связывающих воду.
Реакция протекает по общему для присоединения азотистых оснований к карбонильной группе механизму.
Отщепление воды от интермедиата (III) приводит к образованию иммониевого иона (IV), который при отсутствии водорода у атома азота стабилизируется путем отщепления протона от b -углеродного атома.
3.2. Строение
Молекула енамина представляет собой р-p -сопряженную систему, строение которой можно отразить набором двух резонансных структур.
Таким образом, молекула енамина содержит два нуклеофильных центра – атом азота и атом углерода в b -положении, который несет частичный отрицательный заряд.
3.3. Химические свойства
а) Протонирование и гидролиз
Енамины являются слабыми основаниями. Их протонирование может протекать как по атому азота, так и по атому углерода. Образующаяся при протонировании по b -углеродному атому соль иммония гидролизуется, давая исходное карбонильное соединение и вторичный амин.
Гидролиз енаминов – процесс, обратный их образованию, и протекает по такому же механизму.
б) Алкилирование
Алкилирование енаминов алкилгалогенидами и другими алкилирующими реагентами протекает, как правило, по b -углеродному атому. Последующий гидролиз иммониевой соли приводит к карбонильному соединению.
Последовательность превращений – получение енамина из карбонильного соединения, алкилирование, гидролиз приводит к алкилированию исходного карбонильного соединения по a -положению и носит название реакция Сторка. Этот метод имеет преимущества перед алкилированием кетонов, так как требует более мягких условий и дает в основном продукты моноалкилирования.
Для проведения этой реакции чаще всего используют циклические амины – пирролидин, пиперидин, морфолин. Лучшие результаты достигаются при использовании активных галогенидов – аллил- и бензилгалогенидов, a -галогензамещенных производных простых и сложных эфиров. Например:
в) Ацилирование
При действии галогенангидридов и ангидридов кислот енамины дают продукты С-ацилирования. Последующий гидролиз приводит к дикарбонильному соединению.
Таким образом, последовательность реакция – получение енамина из карбонильного соединения, ацилирование, гидролиз – метод получения b -дикарбонильных соединений. Например:
4. Ароматические амины
4.1. Методы получения
1) Восстановление ароматических нитросоединений
Для восстановления в препаративных целях используют металл (Fe, Zn, Sn) и кислоту, соли металлов в низших степенях окисления (SnCl2, TiCl3), сульфиды щелочных металлов, в промышленности применяют в основном каталитическое гидрирование. См. также лекцию №40.
2) Алкилирование
Реакция аналогична алкилированию алифатических аминов. В качестве алкилирующих реагентов используют алкилгалогениды, алкилсульфаты, спирты.
3) Арилирование
Галогенарены реагируют с аммиаком и аминами в жестких условиях. Процесс катализируется медью и ее соединениями.
Реакция замещения галогена протекает легче при наличии в орто– и пара-положениях электроноакцепторных групп (NO2, CN).
Галогенарены взаимодействуют с ариламинами в присутствии меди с образованием диариламинов (реакция Ульмана).
4.2. Физические свойства и строение
Ароматические амины – бесцветные жидкости или твердые вещества. При хранении быстро темнеют вследствие окисления кислородом воздуха.
Аминогруппа и ароматическое кольцо образуют сопряженную систему. Аминогруппа проявляет электронодонорные свойства за счет +М-эффекта.
Ароматические амины обладают сильными электронодонорными свойствами, на что указывают низкие энергии ионизации (для анилина 7,7 эВ, для фенола 8,4 эВ).
4.3. Химические свойства
Для ариламинов характерны реакции с электрофильными реагентами. Местом атаки электрофила может быть атом азота или ароматическое кольцо.
Основные свойства
Ароматические амины обладают меньшей основностью, чем алифатические амины и аммиак (~ 3 – 5). Причина низкой основности ариламинов – стабилизация свободного амина за счет делокализации неподеленной пары электронов азота по ароматическому кольцу и потеря энергии стабилизации при нарушении сопряженной системы в результате протонирования.
Дифениламин и трифениламин имеют еще большие возможности для делокализации пары электронов азота, что приводит значительному снижению основности. Трифениламин практически не обладает основными свойствами.
Введение заместителей в ароматическое кольцо влияет на основность амина. Влияние заместителей проявляется в соответствии с их электронными эффектами.
|
|
|
|
п-CH3C6H4NH2 |
5,1 |
п-O2NC6H4NH2 |
1,0 |
C6H5NH2 |
4,6 |
(C6H5)2NH |
0,78 |
м-O2NC6H4NH2 |
2,5 |
|
|
Реакции с С-электрофилами
Важнейшими реакциями этого типа являются алкилирование и ацилирование, которые протекают по атому азота и аналогичны реакциям алифатических аминов. Ароматические амины менее реакционноспособны из-за меньшей основности атома азота.
Реакции ароматического электрофильного замещения
а) Галогенирование
Аминогруппа является сильным активирующим заместителем и ориентантом I рода. Галогенирование свободных аминов протекает очень легко и часто приводит к полигалоидпроизводным. Например, анилин при действии бромной воды мгновенно превращаются в нерастворимое 2,4,6-трибромпроизводное.
Для получения моногалогенпроизводных активирующее действие аминогруппы снижают путем ацилирования. После снятия ацильной защиты путем гидролиза получают свободный амин.
б) Нитрование
При нитровании нитрующей смесью амины окисляются. Кроме того, из-за солеобразования по аминогруппе образуется м-изомер (-NH3+ – ориентант II рода).
Для введения нитрогруппы в орто– или пара-положение к аминогруппе последнюю защищают ацилированием. Варьируя условия реакций (температуру, нитрующие агенты), можно проводить нитрование региоселективно.
После снятия ацетильной защиты получают свободные орто– и пара-нитроанилины.
в) Сульфирование
Сульфированием ароматических аминов получают аминосульфокислоты. В 90-100%-ной серной кислоте или олеуме амин полностью находится в протонированной форме. Аммониевая группа NH3+как сильный электроакцепторный заместитель вызывает резкое замедление реакции сульфирования и ориентирует замещение в мета-положение.
Для получения орто- и пара-аминобензолсульфокислот используют “метод запекания”. Процесс осуществляют при длительном нагревании гидросульфатов ароматических аминов при 100-200оС в сухом виде или в высококипящих растворителях. При температуре около 100оС образуется практически чистый орто-изомер (ортаниловая кислота, продукт кинетического контроля), а при 180-200оС – пара-изомер (сульфаниловая кислота, продукт термодинамического контроля).
Нитрозирование
Первичные ароматические амины с азотистой кислотой образуют относительно устойчивые соли арилдиазония.
ArNH2 + NaNO2 + 2HCl ® ArN2+Cl– + NaCl + 2H2O
Эту реакцию называют диазотированием (см.лек. №43).
Вторичные ароматические амины при нитрозировании дают N-нитрозамины.
ArNHR + NaNO2 + HCl ® Ar-N(R)-N=O + NaCl + H2O
Третичные ариламины дают продукты нитрозирования в пара-положение ароматического кольца.
4. Биологически активные амины и их производные.
Биологическую активность проявляют гетерофункциональные соединения, содержащие аминогруппу – аминокарбоновые кислоты, аминоспирты, аминофенолы, аминосульфокислоты.
Этаноламин и его производные.
Этаноламин (коламин) HOCH2CH2NH2 является структурным компонентом сложных липидов (см. лек. №18). В организме образуется при декарбоксилировании аминокислоты серина (см. лек. № 16).
Холин HOCH2CH2N+(CH3)2 – структурный компонент фосфолипидов; витаминоподобное вещество, регулирующее жировой обмен; предшественник в биосинтезе ацетилхолина.
Ацетилхолин CH3COOCH2CH2N+(CH3)2 – посредник при передаче нервных импульсов (нейромедиатор). Накопление ацетилхолина в организме приводит к непрерывной передаче нервных импульсов и сокращению мускульной ткани. На этом основано действие нервнопаралитических ядов (зарин,табун), которые ингибируют действие фермента ацетилхолинэстеразы, катализирующего расщепление ацетилхолина.
Катехоламины – дофамин, норадреналин, адреналин – биогенные амины, продукты метаболизма аминокислоты фенилаланина.
Катехоламины выполняют роль гормонов и нейромедиаторов. Адреналин является гормоном мозгового слоя надпочечников, норадреналин и дофамин – его предшественниками. Адреналин участвует в регуляции сердечной деятельности, обмена углеводов. Увеличение концентрации катехоламинов – типичная реакция на стресс. Их роль заключается в мобилизации организма на осуществление активной мозговой и мышечной деятельности.
Структурно близки к катехоламинам некоторые природные и синтетические биологически активные вещества, также содержащие аминогруппу в b -положении к ароматическому кольцу.
Фенамин является стимулятором центральной нервной системы, снимает чувство усталости. Эфедрин – алкалоид, обладающий сосудорасширяющим действием.
Производные п-аминофенола – парацетамол и фенацетин – лекарственные препараты, обладающие обезболивающим и жаропонижающим действием.
В настоящее время фенацетин рассматривается как вещество, возможно являющееся канцерогеном для человека.
п-Аминобензойная кислота и ее производные.
п-Аминобензойная кислота – витаминоподобное вещество, фактор роста микроорганизмов; участвует в синтезе фолиевой кислоты (витамина ВС). Сложные эфиры п-аминобензойной кислоты вызывают местную анестезию.
Анестезин и новокаин применяются в виде растворимых в воде гидрохлоридов.
Сульфаниловая кислота (п-аминобензолсульфокислота) и сульфаниламиды.
Амид сульфаниловой кислоты (стрептоцид ) и его N-замещенные производные – эффективные антибактериальные средства. Синтезировано более 5000 производных сульфаниламида. Наибольшую активность проявляют сульфониламиды, содержащие гетероциклические основания.
Антибактериальное действие сульфамидных препаратов основано на том, что они имеют структурное сходство с п-аминобензойной кислотой и являются ее атиметаболитами. Присутствующие в бактериальной среде сульфаниламиды включаются в процесс биосинтеза фолиевой кислоты, конкурируя с п-аминобензойной кислотой, и на определенной стадии блокируют его, что ведет к гибели бактерий. Сульфаниламиды не влияют на организм человека, в котором фолиевая кислота не синтезируется.
Кислотно-основные свойства химических соединений
Любое вещество в определенных условиях может проявлять свойства кислоты и основания по отношению к какому-либо другому веществу, включая и растворитель.
Со времен Аррениуса, по определению которого кислоты в водных растворах диссоциирует на ионы водорода и анионы, а основания диссоциируют на гидроксид-ионы и катионы, круг веществ, участвующих в реакциях кислотно-основного равновесия, значительно расширился. Общепринятными считаются протонная теория Бренстеда–Лоури и электронная теория Льюиса.
Протонная теория Бренстеда–Лоури применима лишь к протонсодержащим или протонприсоединяющим веществам. Согласно этой теории кислотой называется вещество, способное быть донором протонов, а основанием – вещество, которое может присоединить (акцептировать) протон:
|
|
|
По определению, HAn – кислота, An – – основание, сопряженное с этой кислотой. Любой кислоте соответствует сопряженное с ней основание.
|
|
|
Любое кислотно-основное равновесие включает взаимодействие двух пар сопряженных кислот и оснований.
Рисунок 6.7. |
В определенных условиях многие вещества могут вести себя как кислота или как основание. Эти два понятия неразделимы, а потому правильнее говорить о кислотно-основных свойствах данного вещества.
В соответствии с законом действующих масс константы равновесия реакций протолиза сопряженных кислот и оснований в воде связаны между собой простым соотношением
|
|
|
|
|
|
|
|
|
|
Перемножив константы сопряженных кислот и оснований, получим
|
|
Заменив активности и на равновесные концентрации, получим
|
|
|
Произведения констант диссоциации сопряженных кислот и оснований в водных растворах равно ионному произведению воды. По известным K k(K осн) можно легко найти значения сопряженных K В.
Электронная теория Льюиса допускает, что участие в кислотно-основном равновесии протона необязательно, поэтому ее называют апротонной. Согласно апротонной (электронной) теории, кислотой называется вещество, способное присоединять электронную пару, а основанием – вещество, способное отдавать электронную пару.
При взаимодействии донора электронной пары :NF 3 (кислота) и акцептора электронной пары BF 3 (основание) образуется более устойчивое электронное окружение (октет) за счет донорно-акцепторной (двухэлектронной двухцентровой) связи.
Рисунок 6.8. |
Ни кислота, ни основание протонов не содержат.
Эта концепция расширяет границы веществ, проявляющих кислотно-основные свойства, включая в себя протонотдающие и протонприсоединяющие системы.
В периоде сила кислородсодержащей кислоты растет с увеличением заряда и с уменьшением радиуса иона кислотообразующего элемента:
|
|
|
Для одного и того же элемента константа диссоциации различных кислот возрастает по мере увеличения степени окисления кислотообразующего элемента примерно на пять порядков каждый раз.
|
|
В пределах одной группы элементов сила кислоты уменьшается по мере увеличения радиуса кислотообразующего элемента:
|
|
|
Для многоосновных кислот способность к депротонизации уменьшается по мере увеличения отрицательного заряда аниона:
|
|
|
При этом константа диссоциации каждой последующей ступени уменьшается примерно на пять порядков:
|
K 1 : K 2 : K 3 = 1 : 10 –5 : 10 –10. |
|
На состояние динамического равновесия, в котором находится раствор слабого электролита, сильно влияет присутствие одноименного иона. Так, диссоциация уксусной кислоты протекает по схеме
|
|
|
и для этой реакции
|
|
|
Прибавление к раствору уксусной кислоты ее соли (CH 3COONa → CH 3COO – + Na +) резко увеличивает концентрацию ионов CH 3COO – и смещает равновесие в сторону образования недиссоциированных молекул кислоты. Ее диссоциация теперь пренебрежимо мала, и концентрация недиссоциированных молекул почти равна концентрации кислоты, тогда при [CH 3COOH] = [кислота], и [CH 3COO –] = [соль] концентрация H + равна
|
|
|
или
|
|
|
Следовательно, концентрация ионов H + этого раствора будет определяться соотношением концентраций кислоты и соли, взятых для его приготовления.
Рассуждая аналогичным образом, можно вывести уравнения для раствора слабого основания и его соли (NH 4OH и NH 4Cl):
|
|
|
или
|
|
|
Из предыдущих уравнений видно, что концентрация ионов водорода при разбавлении сохраняется, ибо отношения [кислота]:[соль], [соль]:[основание] остаются постоянными. Добавление к такой смеси кислоты или щелочи приводит к связыванию избыточных ионов H + анионами, а OH – – катионами. Это смещает равновесие диссоциации слабого электролита, в результате чего концентрация H + практически не меняется. Растворы, содержащие смесь слабого электролита и его соли, сохраняющие характерные для него значения pH при разбавлении, добавлении сильных кислот или щелочей, называются буферными.
|
Модель 6.8. Титрование. |
Если к одному литру ацетатного буфера, содержащего по 0,1 моля уксусной кислоты (K = 1,86 · 10 –5) и ее соли, имеющего [H +] = 1,86 ∙ 10 –5, pH 4,73, добавить 10 мл HCl (0,01 моля), то в результате реакции
|
|
|
концентрация кислоты увеличится, а соли уменьшится на 0,01 моля; тогда
|
|
Добавление такого же количества щелочи приведет к увеличению [CH 3COO –]:
|
|
Тогда
|
|
|
Следовательно, и в том, и в другом случае pH буферного раствора изменится на 0,09. Легко подсчитать, что добавление к 1 л воды 0,01 моля HCl или NaOH изменит pH на 5 единиц. Действительно, если в воде pH равно 7, то концентрация [H +]HCl с C M(HCl) = 0,01 моль∙л –1, то есть pH = 2; в NaOH с C M(HCl) = 0,01 моль∙л –1 pOH = 2, pH = 12.
Однако буферные растворы сохраняют постоянство pH только до прибавления определенного количества сильной кислоты или щелочи, то есть буферные растворы обладают определенной «емкостью».
Буферная емкость определяется количеством эквивалентов сильной кислоты или основания, которые необходимо добавить к 1 л буферного раствора, чтобы изменить его pH на единицу.
Очевидно, чем более концентрированный буферный раствор, тем больше его буферная емкость.
ВВЕДЕНИЕ
Множество реакций органической химии может быть рассмотрено с позиций кислотно-основных взаимодействий. Такие вопросы, как трактовка механизмов реакций, кислотный и основной катализ, влияние различных факторов на ход процесса, в основном базируются на учете кислотно-основных взаимодействий. Эти вопросы относятся к числу фундаментальных, и важно на начальном этапе химического образования, еще в рамках школьной программы, привить учащимся четкие представления об их роли в понимании химии. Овладеть оценкой кислотно-основных взаимодействий – это значит понять сущность химической реакции и возможность управлять ею.
Рассмотрим кратко эволюцию взглядов на природу кислот и оснований. Термины “кислоты” и “основания” сформировались еще в XVII веке, однако их содержание неоднократно пересматривалось и уточнялось. Лишь в конце прошлого века после появления теории электролитической диссоциации (Аррениус, 1887 год) сформировалась первая научная ионная теория кислот и оснований (Оствальд, Аррениус, 1890 год). Согласно этой теории, кислоты – это водородсодержащие соединения, способные при электролитической диссоциации выступать в роли источника протонов (ионов Н+), а основания рассматривались как источник ионов гидроксила (ОН-).
Важной вехой в развитии взглядов на кислоты и основания явилось сформулированное А. Ганчем в 1917-1927 годах понятие об амфотерности – способности некоторых соединений проявлять как кислотные, так и основные свойства в зависимости от условий и природы реагентов, участвующих в кислотно-основном взаимодействии. И, как оказалось позже, таких соединений (проявляющих амфотерность) подавляющее большинство. В зависимости от природы партнера по взаимодействию явная кислота может выступать в роли основания, и наоборот.
Доминирующие в настоящее время протонная (И. Бренстед и Т. Лоури) и электронная (Г. Льюис) теории кислот и оснований были предложены одновременно в 1923 году. Сущность этих теорий будет рассмотрена в отдельных разделах статьи. Несмотря на то что была предпринята попытка (М. Усанович) объединить электронную и протонную теории, до настоящего времени они господствуют в органической химии как бы раздельно, взаимно дополняя друг друга. Существуют два общепринятых определения понятий кислоты и основания – определения Бренстеда и Льюиса.
КИСЛОТНОСТЬ И ОСНОВНОСТЬ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
ПО БРЕНСТЕДУ-ЛОУРИ
По Бренстеду-Лоури, кислоты представляют собой вещества, способные отдавать протон, а основания – вещества, присоединяющие протон. Такой подход известен как бренстедовская кислотность и основность органических соединений или протонная теория кислот и оснований (протолитическая теория): кислота протон + основание.
Процесс отрыва протона и его присоединение другим партнером по взаимодействию проиллюстрируем простейшим примером. Рассмотрим химизм процесса растворения серной кислоты в воде. Серная кислота отдает протон основанию, роль которого выполняет вода, при этом образуются новая кислота (ион гидроксония H3О+) и новое основание (бисульфат-анион ). Последние еще называются соответственно сопряженной кислотой и сопряженным основанием. С переходом протона взаимодействующие соединения поменялись ролями – серная кислота превратилась в сопряженное основание , а вода (основание) – в сопряженную кислоту H3O+ :
При смешении серной и уксусной кислот последняя играет роль основания. Образующаяся протонированная уксусная кислота и бисульфат-анион соответственно являются сопряженными кислотой и основанием:
то есть, по Бренстеду-Лоури, кислотно-основное взаимодействие рассматривается как процесс передачи протона. Приведенные примеры показывают, что не может быть абсолютного деления веществ на кислоты и основания. Такое деление носит относительный характер. Вещества, потенциально способные быть кислотами, становятся таковыми только в присутствии основания, и наоборот.
Несмотря на относительный характер, деление веществ на кислоты и основания существует, и в основу такого деления положены кислотно-основные взаимодействия в воде. То есть вода принята за своеобразный стандарт для оценки кислотно-основных свойств веществ – стандарт нейтральной среды. Если в аналогичных условиях рассматриваемое вещество способно отдавать водород в виде протона легче, чем вода, то его следует отнести к группе кислот. Если вещество по способности присоединять (связывать) протон превосходит воду – это основание (основность выше, чем у воды). Отнесение веществ к кислотам или основаниям не мешает рассматривать их кислотно-основные свойства во всем диапазоне кислотно-основных взаимодействий, то есть кислоту в роли основания и наоборот.
Почему все-таки воде досталась роль своеобразного стандарта в делении веществ на кислоты и основания? Вода – одно из самых распространенных на Земле соединений. Ее кислотно-основные свойства определяют естественный фон (атмосфера, почва, моря и океаны). Вода хорошо растворяет многие полярные и диссоциирующие на ионы вещества. По физическим характеристикам вода хорошо сольватирует как недиссоциированные молекулы, так и свободные ионы. Кроме того, молекулы воды способны к автопротолизу – передаче протона между молекулами одного и того же вещества:
Кислотность соединений количественно оценивается долей ионизированной формы вещества в растворе (воде) или константой равновесия (К ) реакции переноса протона от кислоты к воде как основанию. Так, для уксусной кислоты (вода взята в значительном избытке, и ее концентрация практически не меняется) константа кислотности Ка (где а – начальная буква от англ. acid – кислота) выводится из выражения
Чем больше Ка (соответственно чем выше доля ионизированной формы вещества), тем сильнее кислота. Для уксусной кислоты Ка равна 1,75 ” 10- 5. Такими очень малыми величинами неудобно пользоваться, поэтому используют отрицательный логарифм – lg Ка = pКа . Для уксусной кислоты значение рКа = 4,75. Надо иметь в виду, что, чем меньше величина рКа , тем сильнее кислота.
При растворении в воде оснований В вода выполняет роль кислоты. В результате переноса протона от воды к основанию образуются сопряженная кислота HB+ и сопряженное основание OH- :
B + H2O HB+ + HO-.
Константа основности Кb (b – начальная буква от англ. basic – основной) основания В в воде определяется выражением
В рассмотренных примерах кислотно-основных взаимодействий образуются сопряженные кислотно-основные пары. Между силой кислоты и сопряженного с ней основания существует следующая зависимость: чем слабее кислота, тем больше сила сопряженного с ней основания, и наоборот. Так, вода как слабая кислота и слабое основание, теряя или присоединяя протон, превращается в сопряженное сильное основание (ОН-) или сопряженную сильную кислоту (Н3О+). Кислотно-основные равновесия смещены в направлении образования более слабой кислоты и более слабого основания. Поэтому в схеме автопротолиза воды равновесие практически полностью смещено в сторону неионизированной формы. Если расположить кислоты в порядке уменьшения их силы, то сила соответствующих (сопряженных) оснований будет изменяться в обратном порядке:
сила кислот: H2SO4 > H3O+> > H2O,
HCl
сила оснований: < H2O < NH3 < OH-.
Cl-
Основность соединений оценивают по величине рКа сопряженных с ними кислот. Чем больше величина рКа сопряженной кислоты, тем больше основность соединения. Для этих же целей можно воспользоваться известной зависимостью: произведение константы кислотности кислоты и константы основности сопряженного с ней основания в любом растворителе равно константе автопротолиза этого растворителя: рКа + рКb = рКавто , тогда рКb = рКавто – рКа . Подставляя известные значения рКНОН = 14, рКа уксусной кислоты равно 4,75, определяем рКb – основность сопряженного основания (ацетат-иона CH3COO-): 14 – 4,75 = 9,25. В табл. 1 приведены рКа для различных типов бренстедовских кислот.
Для удобства оценки кислотности растворов или смесей введено выражение рН (водородный показатель, рН = – lg [H+ ]). Для нейтральной среды (дистиллированная вода) значение рН равно 7. Увеличение значения рН с 7 до 14 характеризует увеличение основности среды. Область рН от 7 до 1 характерна для кислотной среды, и чем меньше значение рН, тем выше кислотность. Количественно кислотность и основность определяются методами аналитической химии. Значение рН можно определить экспресс-методами с помощью специальных индикаторов.
Согласно Бренстеду-Лоури, для того чтобы быть кислотой, соединение должно иметь водород. За редким исключением почти все органические соединения отвечают этому условию. Поэтому все они являются потенциальными бренстедовскими кислотами. А вот сила этих кислот определяется конкретной структурой соединений. Степень кислотности определяется главным образом характером атома, с которым связан водород. Элемент и связанный с ним атом водорода называют кислотным центром. Кислотность соединения будет определяться как характером связи в кислотном центре (элемент-водород) (статический фактор), так и способностью атома удерживать электронную пару после ухода иона водорода (динамический фактор). Способность удерживать электронную пару зависит от различных факторов, в том числе от электроотрицательности атомов и их размера. Таким образом, в периодах таблицы Менделеева кислотность возрастает с увеличением электроотрицательности.
Кислотность: H – CH3 < H – NH2 < H – OH < H – F,
H – SH < H – Cl.
В группах кислотность возрастает с увеличением размеров атома.
Кислотность: H – F < H – Cl < H – Br < H – J,
H – OH < H – SH < H – SeH.
Проанализировав количественные характеристики (рКа) указанных кислот (табл. 1), убеждаемся в достоверности приведенных рядов. Рост электроотрицательности атома в кислотном центре или его поляризуемости (с увеличением размеров атома) способствует делокализализации отрицательного заряда, образующегося после отрыва водорода в виде протона, что приводит к повышению кислотности.
Наибольшую кислотность иодистоводородной кислоты в ряду галогеноводородных кислот можно связать с высокой поляризуемостью иодид-аниона по сравнению с другими галогенид-ионами, хотя электроотрицательность изменяется в обратном порядке. По природе кислотного центра большинство бренстедовских кислот может быть представлено четырьмя типами: ОН-кислоты (карбоновые кислоты, фенолы, спирты), SH-кислоты (тиолы), NH-кислоты (амины, амиды, имиды), CH-кислоты (углеводороды и их производные).
В соответствии с приведенной выше оценкой роли природы атома в кислотном центре можно было бы ожидать, что кислотность будет снижаться при переходе от SH- к OH-, NH- и CH-кислотам. Если примыкающие к кислотным центрам радикалы одинаковы или близки по природе (например, алкильные группы), то такая закономерность действительно соблюдается. Если с кислотными центрами связаны разные по природе заместители, то однозначную оценку кислотности соединений разных типов сделать трудно. Влияние примыкающего к кислотному центру радикала может стать более существенным, чем природа центрального атома в кислотном центре. Например, нитрометан (СН-кислота) по кислотности находится на уровне тиолов (SH-кислоты) и превосходит ряд ОН- и NH-кислот (см. табл. 1).
Относительную кислотность соединений, в том числе относящихся к кислотам различного типа, можно определить пользуясь известным правилом: более сильные кислоты вытесняют более слабые из их солей. Так, для определения относительной кислотности воды, аммиака и ацетилена (соответственно ОН-, NH- и CH- кислоты) можно использовать тот факт, что ацетилен разрушает амид натрия с образованием ацетиленида, а последний разлагается водой. Таким образом, ацетилен по кислотности находится между водой и аммиаком: H2O > HCЇCH > NH3 , что согласуется с данными табл. 1. Общим подходом к оценке тех или иных свойств органических веществ является бутлеровский тезис: структура определяет свойства. Структура предопределяет взаимное влияние атомов в молекулах, что в конечном итоге реализуется в конкретных свойствах.
Рассмотрим несколько примеров, как структура (природа радикала у кислотного центра) влияет на кислотность органических соединений. Известно, что в ряду ОН-кислот кислотные свойства убывают в следующем порядке: карбоновые кислоты > фенолы > спирты. В этом ряду радикалами у кислотных центров соответственно являются ацил с ярко выраженным акцепторным характером, арил, относящийся к акцепторным заместителям, но уступающий ацилам, и алкил, характеризующийся хотя и слабым, но электронодонорным эффектом. Указанные радикалы до разрыва связи О-Н будут различным образом влиять на ее поляризацию: чем выше акцепторность радикала, тем выше полярность связи (статический фактор). Однако более существенное влияние заместителей будет проявляться после разрыва О-Н-связи: чем выше степень делокализации заряда аниона, тем выше его устойчивость (динамический фактор). А чем стабильнее частица (в нашем случае кислородцентрированный анион), тем ниже энергетические барьеры на пути ее образования. В рассматриваемых примерах устойчивость анионов будет уменьшаться в следующем порядке: ацилат-анион > феноксид-анион > алкоксид-анион:
В первом случае делокализация заряда достигается за счет его распределения между двумя эквивалентными атомами кислорода. В феноксид-анионе делокализация заряда достигается за счет сопряжения электронных пар атома кислорода с p-системой ароматического ядра, в результате чего часть электронной плотности с атома кислорода переносится на ароматическое ядро (отрицательный заряд на атоме кислорода снижается). Высокая степень локализации заряда на атоме кислорода в алкоксид-анионе делает его наименее стабильным и соответственно наиболее трудно образующимся.
Легко понять, что введение в радикал у кислотного центра электроноакцепторных заместителей будет способствовать повышению кислотности всех типов кислот. Особенно резкое повышение кислотности СН-кислот наступает в случае, если введение такого заместителя придает соединению возможность существовать в нескольких таутомерных формах. Сравните кислотность двух СН-кислот: хлороформа и нитрометана (см. табл. 1). Из таблицы видно, что кислотность последнего почти на пять порядков выше. Столь значительная разница в кислотности двух указанных соединений обусловлена тем, что нитрометан может существовать в двух таутомерных формах с общим мезомерным анионом.
Аналогичный подход можно использовать для объяснения подвижности a-водородных атомов в карбонильных соединениях.
Кратко остановимся на влиянии электронных факторов на основность органических соединений. В качестве оснований могут выступать анионы или нейтральные молекулы, содержащие атомы с неподеленными электронными парами. В роли последних чаще всего выступают азот- и кислородсодержащие соединения. Сила оснований будет определяться концентрацией электронной плотности на основных центрах (центрах протонирования). Влияние электронных факторов на основность органических соединений будет прямо противоположным тому, что выше было рассмотрено для кислот: электронодонорные заместители у основных центров будут усиливать основность, акцепторные – ее понижать.
Кроме оснований, понимаемых в рамках широкой трактовки этого термина, существует более узкая трактовка – органические основания. Это органические соединения, используемые на практике в качестве акцепторов протонов. К ним относятся нейтральные основания (третичные амины, амидины) и анионные основания (алкоголяты и амиды щелочных металлов, металлоорганические соединения). В препаративных синтезах эту роль чаще всего выполняют третичные амины – триэтиламин, диметиланилин, пиридин. Используя рассмотренные выше подходы в оценке кислотно-основных свойств органических соединений, можно на качественном уровне дать характеристику любому органическому соединению.
КИСЛОТНОСТЬ И ОСНОВНОСТЬ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ ПО ЛЬЮИСУ
По Льюису, кислотные и основные свойства органических соединений оцениваются по способности принимать или предоставлять электронную пару с последующим образованием связи. Атом, принимающий электронную пару, является акцептором электронов, а соединение, содержащее такой атом, следует отнести к кислотам. Атом, предоставляющий электронную пару, является донором электронов, а соединение, содержащее такой атом, – основанием.
По сравнению с протонной теорией Бренстеда теория Льюиса носит более общий характер и охватывает более широкий круг соединений. С учетом энергетических характеристик участвующих в кислотно-основных взаимодействиях орбиталей кислотой Льюиса является молекула с низкой по энергии свободной молекулярной орбиталью, а основанием Льюиса – молекула, предоставляющая для межмолекулярного взаимодействия высокую по энергии заполненную молекулярную орбиталь. Конкретно кислотами Льюиса могут быть атом, молекула или катион: протон, галогениды элементов второй и третьей групп Периодической системы, галогениды переходных металлов – BF3 , ZnCl2 , AlCl3 , FeCl3 , FeBr3 , TiCl4 , SnCl4 , SbCl5 , катионы металлов, серный ангидрид – SO3 , карбкатион. К основаниям Льюиса относятся амины (RNH2 , R2NH, R3N), спирты ROH, простые эфиры ROR, тиолы RSH, тиоэфиры RSR, анионы, соединения, содержащие p-связи (в том числе ароматические и гетероциклические соединения), особенно если их донорная способность усилена электронодонорными заместителями.
Теперь попытаемся сопоставить два подхода (Бренстеда и Льюиса) к определению кислот и оснований. Как видно из определений, основания Льюиса тождественны основаниям Бренстеда: те и другие являются донорами пары электронов. Разница лишь в том, куда расходуется эта электронная пара. Основания Бренстеда предоставляют ее для связи с протоном и поэтому являются частным случаем оснований Льюиса, которые предоставляют электронную пару любой частице с вакантной орбиталью. Более существенные различия отмечаются в трактовке кислот. Теория Бренстеда охватывает лишь протонные кислоты, тогда как кислоты Льюиса – это любые соединения со свободной орбиталью. Протонные кислоты рассматриваются в теории Льюиса не как кислоты, а как продукты нейтрализации протона основаниями. Например, серная кислота – продукт нейтрализации кислоты Н+ основанием , соляная кислота – продукт нейтрализации Н+ основанием Cl-.
При взаимодействии кислот и оснований Льюиса образуются донорно-акцепторные (кислотно-основные) комплексы самой различной природы. Ниже приведены примеры таких взаимодействий.
Органическая химия богата примерами подобных взаимодействий, в которых ковалентная связь образуется в результате взаимодействия частицы, имеющей заполненную орбиталь, с частицей, имеющей вакантную орбиталь. Эти процессы могут рассматриваться как кислотно-основные реакции Льюиса. Более широкий охват конкретных объектов, характерный для теории Льюиса, более существенные различия в природе соединений приводят к тому, что ряд относительной силы кислот и оснований Льюиса не носит столь универсального характера, как для кислот и оснований Бренстеда. Для кислот Льюиса невозможно составить таблицу со строгими количественными характеристиками кислотности, как это сделано для кислот Бренстеда (см. табл. 1). Для них имеется лишь качественная приблизительная последовательность кислотности. Так, для кислот Льюиса типа галогенидов металлов кислотность падает в ряду: BX3 > AlX3 > FeX3 > SbX5 > > SnX4 > ZnX2 .
Суммируя изложенное, отметим, что в настоящее время в оценке кислотно-основных свойств органических соединений есть две теории. Можно ли сказать, что одна из них имеет существенные преимущества перед другой. Однозначного ответа на подобный вопрос не может быть. Да, теория Льюиса имеет более общий характер и охватывает более широкий круг конкретных объектов. Теория Бренстеда-Лоури характеризуется более строгим учетом количественных характеристик кислотности и основности. Предпочтение той или другой теории можно дать лишь с учетом конкретного содержания обсуждаемого вопроса. Если обсуждаются процессы, протекающие с участием водородсодержащих веществ, в которых важную роль играют реакции переноса протона и существенное влияние оказывают водородные связи, видимо, в этих случаях предпочтение надо отдать теории Бренстеда-Лоури. Важным достоинством теории Льюиса является то, что любое органическое соединение может быть представлено как кислотно-основный комплекс. При обсуждении гетеролитических реакций, в которых кислоты Льюиса участвуют как электрофильные реагенты, а основания Льюиса – как нуклеофилы, предпочтение должно быть отдано теории Льюиса. Химики научились умело использовать достоинства каждой из названных теорий.
КОНЦЕПЦИЯ ЖЕСТКИХ И МЯГКИХ
КИСЛОТ И ОСНОВАНИЙ
(принцип ЖМКО, принцип Пирсона)
Как уже отмечалось, кислотно-основные отношения можно охарактеризовать как взаимодействие частиц, содержащих заполненную и вакантную орбитали. Легкость протекания кислотно-основных реакций зависит не только от силы кислоты и основания, но и от другого свойства, учитывающего соответствие друг другу взаимодействующих (граничных) орбиталей. Учет этого свойства позволил Пирсону конкретизировать свойства льюисовских кислот и оснований, введя представление о жестких и мягких кислотах и основаниях (принцип ЖМКО или принцип Пирсона). Общий подход деления кислот и оснований на жесткие и мягкие может быть охарактеризован следующим образом.
Жесткие кислоты – кислоты Льюиса, в которых акцепторные атомы малы по размеру, обладают большим положительным зарядом, большой электроотрицательностью и низкой поляризуемостью. Молекулярная орбиталь жестких кислот, на которую переходят электроны донора, имеет низкий уровень энергии.
Мягкие кислоты – кислоты Льюиса, содержащие акцепторные атомы большого размера с малым положительным зарядом, с небольшой электроотрицательностью и высокой поляризуемостью. Молекулярная орбиталь мягких кислот, принимающая электроны донора, имеет высокий уровень энергии.
Жесткие основания – донорные частицы, в которых атомы-доноры имеют высокую электроотрицательность и низкую поляризуемость. Валентные электроны удерживаются прочно, продукт окисляется с трудом. Орбиталь, пара электронов которой передается акцептору, имеет низкий уровень энергии. Донорными атомами в жестких основаниях могут быть кислород, азот, фтор, хлор.
Мягкие основания – донорные частицы, в которых атомы-доноры имеют низкую электроотрицательность и высокую поляризуемость, они легко окисляются; валентные электроны удерживаются слабо. Орбиталь, пара электронов которой передается акцептору, обладает высоким уровнем энергии. Донорными атомами в мягких основаниях выступают атомы углерода, серы, иода.
Так как свойства атомов меняются плавно и учитывая взаимное влияние атомов в молекулах, значительная группа кислот и оснований Льюиса по приведенным выше характеристикам занимает промежуточное положение. Их принято называть промежуточными. Классификация кислот и оснований по Пирсону приведена в табл. 2.
Строгой количественной оценки “жесткости” и “мягкости” кислот и оснований пока не существует. Их можно лишь приблизительно расположить в ряды. Например, мягкость оснований убывает в ряду: J- > Br- > Cl- > F- и в ряду > > OH- > F-. Объяснить отмеченное (в пределах узких рядов) можно изменением электроотрицательности элементов и их поляризуемости.
Понятия жесткие и мягкие кислоты и основания неравноценны понятиям сильные и слабые кислоты и основания. Это две независимые характеристики кислот и оснований. Например, слабое основание – вода и сильное основание – алкоксид-анион оба попадают в группу жестких оснований, а сильные основания RO- и R3C- надо отнести соответственно к жестким и мягким основаниям. Деление кислот и оснований на жесткие и мягкие позволяет руководствоваться простым правилом: жесткие кислоты преимущественно взаимодействуют с жесткими основаниями, а мягкие кислоты – с мягкими основаниями (принцип ЖМКО). Правило не имеет строгой теоретической основы (хотя принцип орбитального соответствия можно считать весомым обоснованием), а является обобщением, выдвинутым из экспериментальных данных, то есть носит эмпирический характер. Последнее явилось причиной того, что принцип ЖМКО химиками принимался неоднозначно, подвергался критике. Тем не менее принцип ЖМКО помогает не только объяснить конкретные экспериментальные результаты из области кислотно-основных взаимодействий, но и в значительной степени обладает предсказательным характером. Так, если в молекуле имеются несколько реакционных центров, то в зависимости от характеристики реагента (его жесткости или мягкости) можно прогнозировать направление реакции. Концепция ЖМКО как сравнительно молодая теория (ей всего 30 лет) в настоящее время пополняется новым экспериментальным материалом, идет теоретическое осмысление эмпирических данных, в том числе поиск количественных характеристик жесткости и мягкости кислот и оснований.
Задание 1. На основе приведенных в таблице показателей кислотности, рассчитать константы и расположить указанные органические соединения в ряд по увеличению кислотности. Ответ обосновать с позиций электронного строения.
|
FCH2COOH (фторуксусная к-та) |
CH3COOH (уксусная к-та) |
CH3OH (метанол) |
H2O |
C2H5OH (этанол) |
Водный раствор, pKa |
2,59 |
4,76 |
15,49 |
15,74 |
15,90 |
Решение: Ка – константа кислотности. Для количественной характеристики кислотных свойств используется величина pKa = – lg Ka.
Чем меньше рКа, тем больше кислотность по Бренстеду.
Рассчитаем константы кислотности:
FCH2COOH (фторуксусная кислота): ;
CH3COOH (уксусная кислота): ;
CH3OH (метанол): ;
H2O: ;
C2H5OH (этанол): .
На основании данных таблицы и рассчитанных значений констант ряд по увеличению кислотности будет выглядеть так:
C2H5OH < H2O < CH3OH < CH3COOH < FCH2COOH;
С позиций электронного строения ряд можно обосновать таким образом: кислотные свойства представленных соединений обусловлена наличием ОН-групп, кислотность которых определяется влиянием непосредственно связанных с ними фрагментов молекулы: карбонильной крупы (фторуксусная и уксусная кислоты) и алкильного радикала (метанол и этанол). Для качественно оценки кислотности этих центров сравним стабильность соответствующих им анионов: карбоксилат-аниона – СОО– и алкоксид-аниона – RO–. В карбоксилат-анионе отрицательный заряд в результате pр-сопряжения равномерно распределён между двумя атомами кислорода, что обуславливает высокую стабильность аниона:
В алкоксид-анионе R→O– сопряжение отсутствует, следовательно, его стабильность мала.
Более сильные кислотные свойства фторуксусной кислоты, по сравнению с уксусной, объясняются присутствием атома фтора, проявляющего –I-эффект. Длина углеводородного радикала, проявляющего +I-эффект, также сказывается на силе кислотных центров, в примере: метанол более сильная кислота, чем этанол.
Задание 2. Сравните основность следующих соединений: 2-аминоэтанол и этиламин, анилин. Для более сильного основания напишите реакцию образования соли.
Решение:
HO ← СH2 – СН2 → NH2 2-аминоэтанол CH3 – CH2 → NH2 этиламин
анилин
Центрами, обуславливающими основными свойствами – основными центрами – в 2-аминоэтаноле являются атомы кислорода и азота, а в этиламине и анилине – атомы азота. Электроотрицательность атома азота ниже, чем у кислорода, поэтому основные свойства у этого центра выше. Влияние природы радикала: в анилине и 2-аминоэтаноле имеются электроноакцепторные заместители: бензольное кольцо и гидрокси-группа соответсвенно, которые снижают основные свойства соединений. Кроме того, в анилине пара электронов атома азота вступает в pр-сопряжение с р-электронами бензольного кольца, что дополнительно снижает основность этого соединения. Таким образом, ряд пол уменьшению основных свойств представленных выше соединений будет выглядеть следующим образом: этиламин > 2-аминоэтанол > анилин.
Реакция образования соли:
CH3 – CH2 → NH2 + HCl ↔ CH3 – CH2 → NH3+ Cl–.
Задание 3. Укажите центры основности в молекуле новокаина — сложного эфира n-аминобензойной кислоты и диэтиламиноэтанола, который применяется в хирургической практике для местной анестезии. Напишите реакцию образования соли новокаина с хлороводородной кислотой.
Решение:
В новокаине два наиболее выраженных основных центра: 1) атом азота, связанный с бензольным ядром, 2)атом азота, связанный с алифатическими радикалами. Электронодонорные заместители повышают основные свойства, так как увеличивают электронную плотность на атоме основного центра, а электроноакцепторные заместители понижают электронную плотность и выраженность основных свойств. Неподеленная пара электронов атома азота (1) вступает в р,p-сопряжение с p-системой ароматического кольца, что приводит к уменьшению основных свойств. Алкильные радикалы, являясь электронодонорами, увеличивают электронную плотность на атоме азота (2) второго основного центра и его основные свойства. Следовательно, протон от кислоты присоединяется ко второму центру.
Задание 4. Сравнить кислотные свойства спиртов и тиолов. Объяснить различия с позиций электронного строения атомов, образующих кислотный центр. Привести схемы реакций, доказывающих кислотные свойства указанных соединений.
Решение: Качественной характеристикой кислотных свойств может служить стабильность образующегося аниона. Сила кислоты определяется стабильностью аниона, образующегося из этой кислоты: чем стабильнее анион, тем сильнее кислота. В пределах группы таблицы элементов Менделеева стабильность анионов возрастает с увеличением атомного номера элемента, так как увеличивается объем электронных орбиталей, и создается лучшая возможность для делокализации отрицательного заряда. Поэтому SH-кислоты (тиолы) являются более сильными кислотами, чем ОН-кислоты.
Тиолы, как более сильные кислоты, в отличие от спиртов, реагируют не только со щелочными металлами, но и со щелочами, а также оксидами и солями тяжелых металлов (ртуть, свинец, мышьяк, хром, висмут и др.):
Задание 5. Возможно ли образование водородных связей в спиртах. Ответ пояснить. Влияет ли образование водородных связей на свойства соединений?
Решение: Водородная связь – это взаимодействие между двумя электроотрицательными атомами одной или разных молекул посредством атома водорода: А−Н … В (чертой обозначена ковалентная связь, тремя точками – водородная связь). Связь обусловлена электростатическим притяжением атома водорода (несущим положительный заряд δ+) к атому электроотрицательного элемента, имеющего отрицательный заряд δ−.
В спиртах в одной и той же молекуле одновременно присутствуют слабые кислотные (-ОН) и основные центры (), что приводит к образованию межмолекулярных водородных связей по схеме:
Энергия водородной связи небольшая, примерно 10-30 кДж/ моль, но обычно их образуется много и действует кооперативный эффект. Образование водородных связей в спиртах приводит к повышению температуры кипения по сравнению с углеводородами.
Задание 6. Проанализировать кислотные и основные свойства аминокислот на примере глицина. Ответ обосновать с помощью схем реакций, доказывающих амфотерные свойства аминокислот. Что такое изоэлектрическая точка?
Решение: Аминокислоты проявляют свойства оснований за счет аминогруппы и свойства кислот за счет карбоксильной группы, т.е. являются амфотерными соединениями. Подобно аминам, они реагируют с кислотами с образованием солей аммония:
H2N–CH2–COOH + HCl → Cl – [H3N–CH2–COOH]+
Как карбоновые кислоты они образуют соли с основаниями:
H2N–CH2–COOH + NaOH → H2N–CH2–COO Na + H2O
а так же другие функциональные производные: сложные эфиры и амиды.
Кроме того, возможно взаимодействие амино- и карбоксильной групп как внутри одной молекулы (внутримолекулярная реакция), так и принадлежащих разным молекулам (межмолекулярная реакция).
Благодаря амфотерности растворы аминокислот в воде обладают свойствами буферных растворов.
Изоэлектрической точкой (pI) аминокислоты называют значение pH, при котором максимальная доля молекул аминокислоты обладает нулевым зарядом (биполярный ион, цвиттер-ион, бетаиновая структура).
При таком pH аминокислота наименее подвижна в электрическом поле, и данное свойство можно использовать для разделения аминокислот, а также белков и пептидов.
III. Задания для самостоятельной работы
Задание1. Дайте определение понятия «кислота» по теории Бренстеда. Сравните кислотность следующих пар соединений: этантиол и этанол; 4-нитрофенол и пропанол-2. Обоснуйте свой ответ с позиций теории электронного строения соединений.
Задание 2. Для лечения острых и хронических отравлений применяют БАЛ (британский антилюизит) и сукцимер. Приведите названия этих соединений по систематической номенклатуре.
Установите центры кислотности в молекулах этих соединений, какие из них преимущественно определяют кислотность каждого из соединений.
Задание 3.
|
В молекуле алкалоида анабазина содержатся два атома азота. Выделите наиболее основный центр в молекуле соединения и приведите строение его соли анабазина с хлороводородной кислотой. |
Задание 4.
ТИМИН |
Пространственная структура ДНК поддерживается за счет образования водородных связей, которые образуются между комплиментарными парами: аденин-тимин и гуанин-цитозин. Определите основные центры в молекулах тимина и аденина и покажите схему образования водородных связей между ними. |
АДЕНИН |
Задание 5. Дайте определение понятия «основания» по теории Бренстеда. Расположите следующие соединения в ряд по возрастанию основности:
1) пиррол, 2-нитропиррол, пирролидин;
2) анилин, п-аминофенол, п-аминобензойная кислота.