БІОХІМІЧНІ ФУНКЦІЇ ПЕЧІНКИ. БІОХІМІЯ ЖОВТУХ; БІОТРАНСФОРМАЦІЯ ЧУЖОРІДНИХ СПОЛОЛУК В ПЕЧІНЦІ.
БІОХІМІЯ ПЕЧІНКИ
Печінка займає центральне місце в обміні речовин завдяки анатомічному розміщенню і багатому набору ферментів.
Функції печінки:
1. Поживні речовини, які всмоктувались у кишковому тракті, з кров’ю ворітної вени надходять, за винятком ліпідів, у печінку. Частина ліпідів через лімфу і загальне коло кровообігу також надходить у печінку. Тут поживні речовини піддаються певним перетворенням і постачаються через кров до всіх інших органів і тканин. Таким чином, печінка є основним органом розподілу поживних речовин в організмі, зокрема глюкози, триацилгліцеринів і кетонових тіл (рис. ).
2. У печінці синтезуються багаточисленні білки і ліпопротеїни плазми крові, низькомолекулярні біохімічно активні речовини (креатин, 25‑оксихолекальциферол, гем), холестерин.
3. Синтезується кінцевий продукт азотового обміну – сечовина.
4. Синтезуються жовчні кислоти, утворюється і виділяється у кишечник жовч, що має значення для травлення ліпідів, виведення надлишку холестерину і деяких продуктів метаболізму в кишечник.
5. У печінці знешкоджуються токсичні речовини, що утворюються в організмі чи надходять ззовні, інактивуються ліки, деякі гормони.
6. Депонуються залізо, інші метали, вітаміни А, D, Е, В12, фолієва кислота.
Таким чином, печінка виконує метаболічні, біосинтетичні, дезінтоксикаційні та екскреторні функції. Ушкодження клітин печінки, які можуть бути спричинені інфекційними хворобами, дією гепатотоксинів (алкоголю, хлорованих вуглеводнів, деяких ліків), гіпоксією, тривалим закупоренням жовчних шляхів, зумовлюють розлади функцій печінки. Для діагностики захворювань печінки, оцінки ефективності лікування використовують функціональні проби (тести) – біохімічні аналізи ряду показників плазми крові й сечі.
Чутливим показником ушкодження печінки є підвищена активність у плазмі аланінамінотрансферази. Фермент виділяється у кров із зруйнованих печінкових клітин (при вірусних гепатитах, хронічному активному гепатиті). Незначне підвищення активності амінотрансферази при одночасному значному зростанні активності лужної фосфатази плазми свідчить про непрохідність жовчних проток, порушення секреції жовчі (холестаз). При патології печінки зростає активність у плазмі мікросомного ферменту гамма-глутамілтрансферази. Активність цього ферменту також зростає при впливі алкоголю та деяких ліків, які стимулюють синтез мікросомних ферментів. Діагностичну цінність має визначення вмісту в плазмі крові альбуміну, ряду глобулінів, факторів згортання крові, які утворюються у гепатоцитах (проби на біосинтетичну функцію печінки).
Для диференціальної діагностики захворювань печінки і жовчної системи, які супроводжуються жовтяницею, визначають вміст у плазмі вільного та зв’язаного білірубіну, а в сечі – білірубіну й уробіліну, оцінюють візуально колір калу та сечі.
Обмін вуглеводів у печінці
Всмоктуючись у кишечнику, глюкоза надходить з кров’ю ворітної вени у печінку, де більша частина її фосфорилюється з утворенням глюкозо-6-фосфату.
У паренхіматозних клітинах печінки є обидва ферменти, які каталізують цю реакцію – гексокіназа і глюкокіназа, що відрізняються своїми каталітичними властивостями. При нормальній концентрації глюкози в крові ворітної вени і у клітинах печінки глюкокіназа малоактивна, а після споживання вуглеводної їжі зростають концентрація глюкози і, відповідно, активність ферменту. Швидке фосфорилювання глюкози і затримка її в печінці попереджують значне підвищення вмісту глюкози у загальному колі кровообігу (фосфорильована глюкоза не виходить із клітин у кров).
Фруктоза і галактоза також після всмоктування перетворюються у печінці в глюкозо-6-фосфат. Спадковий дефіцит ферментів перетворення фруктози і галактози у печінці зумовлює розвиток захворювань – непереносимості фруктози, фруктоземії, галактоземії.
Глюкозо-6-фосфат – ключовий проміжний продукт обміну вуглеводів – може перетворюватись у печінці різними шляхами (рис.), і вибір якогось одного із них залежить від потреб як самої печінки, так і всього організму.
1. Із глюкозо-6-фосфату синтезується глікоген (рис. ), запасна форма глюкози в організмі.
У нормі вміст глікогену в печінці складає 70-100 г, при споживанні їжі, багатої вуглеводами, зростає до 150 г. Через декілька годин після прийому їжі глікоген печінки поступово розпадається до вільної глюкози для забезпечення потреби організму у вуглеводах (але стільки ж синтезується із глюкози їжі). Приблизно через 24 год голодування вміст глікогену в печінці падає майже до нуля і для забезпечення організму глюкозою буде перебігати з максимальною інтенсивністю процес глюконеогенезу.
Спадкові хвороби, пов’язані з порушенням обміну глікогену, називаються глікогенними хворобами. Якщо немає ферментів, що викликають мобілізацію глікогену, такі глікогенні хвороби називаються глікогенозами. Відомо декілька різновидів глікогенозів, пов’язаних з недостатністю різних ферментів. Глікогенози супроводжуються збільшенням печінки, м’язовою слабкістю, гіпоглікемією натще. Хворі діти помирають у ранньому віці.
Якщо порушується синтез глікогену (через дефект ферментів синтезу), то вміст глікогену в клітинах знижується. Такі спадкові хвороби називаються аглікогенозами. Найактивнішими проявами аглікогенозу є виражена гіпоглікемія натще (немає запасу глікогену), втрата свідомості, корчі, відставання розумового розвитку через голодування мозку. Звичайно такі діти помирають у ранньому віці.
2. Під дією глюкозо-6-фосфатази – ферменту, який знаходиться тільки у печінці, клітинах епітелію ниркових канальців і тонкого кишечника, глюкозо-6-фосфат гідролізується до вільної глюкози, яка надходить у кров і доставляється до інших тканин. Вивільнення глюкози із печінки відбувається, коли її концентрація в крові падає нижче нормального рівня. Завдяки цьому підтримується концентрація її у межах фізіологічної норми (3,33-5,55 ммоль/л).
3. Надлишок глюкозо-6-фосфату, який не використаний на утворення глюкози крові і глікогену печінки, розщеплюється шляхом гліколізу до піровиноградної кислоти і далі – до ацетил-КоА і СО2, які використовуються для синтезу жирних кислот. Із проміжного продукту гліколізу – діоксіацетонфосфату – шляхом відновлення утворюється гліцерол-3-фосфат. Жирні кислоти і гліцерол-3-фосфат використовуються для синтезу жирів (триацилгліцеринів), гліцерофосфоліпідів, які частково залишаються у печінці, а частково переносяться до інших тканин у складі ліпопротеїнів. Певна частина ацетил-КоА у печінці використовується для синтезу холестерину.
4. Розпад глюкозо-6-фосфату до СО2 і Н2О постачає клітини печінки енергією. В аеробних умовах поєднання гліколізу в цитоплазмі і циклу лимонної кислоти з окиснювальним фосфорилюванням у мітохондріях дає максимальний вихід – 38 моль АТФ на 1 моль глюкози. Однак у проміжках між прийомами їжі печінка для продукції енергії окиснює переважно жирні кислоти, а не глюкозу. При надходженні змішаної їжі енергія постачається за рахунок окиснення кетокислот, що утворюються при розпаді амінокислот, і частково глюкози.
5. Частина глюкозо-6-фосфату у печінці окиснюється в пентозофосфатному циклі . Цей шлях розпаду глюкози постачає відновлений НАДФН, необхідний для реакції відновлення під час біосинтезу жирних кислот, холестерину і для реакції мікросомального окиснення, а також пентозофосфати, необхідні для синтезу нуклеотидів і нуклеїнових кислот.
Приблизно 1/3 глюкози окиснюється у печінці пентозофосфатним шляхом, а 2/3 використовується у ході реакцій гліколізу.
Крім розпаду глікогену, в печінці функціонує й інший шлях утворення глюкози – глюконеогенез. Саме клітини печінки містять повний набір ферментів для синтезу глюкози із невуглеводних речовин – лактату, пірувату, амінокислот, гліцерину (рис. ).
Глюконеогенез із лактату відбувається у період відновлення після інтенсивного м’язового навантаження, коли лактат, що утворюється у м’язах, надходить у печінку і перетворюється в глюкозу. Остання із печінки доставляється у м’язи і використовується для відновлення запасів глікогену. Глюконеогенез із амінокислот разом із розпадом глікогену печінки забезпечують постійність рівня глюкози в крові у проміжках між споживаннями їжі. Максимальної активності глюконеогенез досягає через 1 добу вуглеводного чи повного голодування, коли запас глікогену печінки вичерпується. Тоді йде інтенсивний розпад білків тканин, в основному м’язів, і амінокислоти потрапляють у печінку, де служать субстратами для глюконеогенезу.
Співвідношення між процесами розпаду і синтезу глюкози і глікогену в клітинах печінки знаходиться під контролем цілого ряду факторів регуляції, у тому числі концентрації АТФ, АДФ і АМФ, проміжних продуктів обміну і гормонів.
Обмін ліпідів у печінці
Ферментні системи здатні здійснювати регуляцію ліпідного обміну цілого організму. Тісно поєднані між собою процеси обміну жирів у печінці і жировій тканині. Важливе значення має постачання печінкою іншим органам і тканинам фосфоліпідів, холестерину, кетонових тіл.
В організмі людини резерви жирів локалізовані в основному в жировій тканині, а в печінці вміст їх менший 1 % від маси органа. Під час значного фізичного навантаження, стресового стану, а також голодування в жировій тканині стимулюються ліполіз і вивільнення жирних кислот. Вільні жирні кислоти потрапляють у кров і у вигляді комплексів з альбуміном плазми розносяться до інших органів і тканин. До 50 % цих жирних кислот можуть поглинатись печінкою і використовуватись для окиснення до СО2 і Н2О, утворення кетонових тіл або синтезу триацилгліцеринів, фосфоліпідів і ефірів холестерину (рис. ).
В умовах спокою і достатнього надходження в організм поживних речовин печінка отримує енергію в основному за рахунок окиснення амінокислот, а не жирних кислот. При голодуванні основним джерелом енергії стає окиснення жирних кислот до СО2 і Н2О.
Крім того, при голодуванні різко збільшується окиснення жирних кислот з утворенням кетонових тіл. Кетонові тіла утворюються у печінці, звідки переносяться кров’ю до периферичних тканин, де використовуються як джерело енергії (рисунки).
Окиснення кетонових тіл відбувається у скелетних м’язах, міокарді, нирках і навіть у мозку. В цих тканинах є ферменти, які перетворюють ацетооцтову і бета-гідроксимасляну кислоти в ацетил-КоА (тобто використання кетонових тіл проходить у циклі Кребса). У самій печінці ферменти активації ацетооцтової кислоти відсутні, тому кетонові тіла там не утилізуються. Як енергетичний субстрат кетонові тіла більш ефективно конкурують з глюкозою, ніж нерозчинні у воді вищі жирні кислоти, концентрація яких у крові лімітується кількістю альбумінів. При тривалому голодуванні споживання глюкози у мозку знижується приблизно до 25 % від початкового рівня і в цих умовах кетонові тіла служать для мозку основним джерелом енергії. Підвищений рівень кетонових тіл у плазмі крові в час голодування (близько 2 ммоль/л) розглядають як фізіологічний кетоз, а при важких формах цукрового діабету має місце патологічний кетоз, коли концентрація кетонових тіл досягає 20-30 ммоль/л. Накопичення кетонових тіл при тривалому голодуванні, цукровому діабеті, нирковій глюкозурії, тобто в умовах обмеженої утилізації вуглеводів і посиленої мобілізації жирних кислот із депо, зумовлюється недостачею оксалоацетату, який приводить до гальмування включення ацетил-КоА в цикл лимонної кислоти і направлення його на синтез кетонових тіл.
Важливим біосинтетичним шляхом у печінці є утворення жирних кислот і жирів (ліпогенез). Жирні кислоти синтезуються швидко і у великій кількості із ацетил-КоА, джерелом якого може бути глюкоза і амінокислоти, не використані для інших функцій.
Синтез жирних кислот стимулюється рядом регуляторних механізмів при надходженні в клітини глюкози. Зокрема, при переході організму із змішаного раціону на раціон, багатий вуглеводами і бідний ліпідами, у печінці зростає синтез ферментів, що беруть участь у біосинтезі жирних кислот (цитратліази, ацетил-КоА-карбоксилази, пальмітилсинтетази, ферментів пентозофосфатного шляху окиснення глюкози). У печінці більш інтенсивно, ніж у позапечінкових тканинах, відбуваються реакції подовження ланцюга жирних кислот й утворення мононенасичених жирних кислот із насичених. Таким чином, у печінці утворюється властивий даному виду набір жирних кислот.
Новосинтезовані жирні кислоти, а також жирні кислоти, які потрапили у печінку із хіломікронів під час травлення жирів їжі, та жирні кислоти, звільнені із жирових депо при мобілізації жирів, використовуються в гепатоцитах для синтезу жирів, фосфоліпідів, ефірів холестерину, або окиснюються (рис. ).
Напрямок перетворення залежить від рівня енергії в клітинах печінки й енергетичних потреб цілого організму, концентрації жирних кислот у плазмі крові, інтенсивності обміну в позапечінкових тканинах.
Гліцерол-3-фосфат, необхідний для утворення жирів і фосфоліпідів, синтезується у печінці двома шляхами: із вільного гліцерину під дією гліцеролкінази та відновленням діоксіацетонфосфату гліцеролфосфатдегідрогеназою. Активні форми жирних кислот (ацил-КоА) взаємодіють з гліцерол-З-фосфатом з утворенням фосфатидної кислоти, яка далі використовується для синтезу триацилгліцеринів і гліцерофосфоліпідів.
У печінці може зберігатись тільки обмежена кількість жирів (менше 1 % маси органа), а їх надлишок виводиться у кров у складі ЛДНГ.
Останні надходять у капіляри позапечінкових тканин, де під дією ліпопротеїнліпази жири гідролізуються, і жирні кислоти утилізуються в клітинах. Швидкість секреції печінкою ЛДНГ відповідає швидкості їх споживання периферичними тканинами. За добу печінка виділяє в кров близько 20‑50 г жиру.
Порушення виведення жирів із печінки у складі ліпопротеїнів зумовлює жирове переродження печінки. Зазначимо роль фосфоліпідів у попередженні жирової інфільтрації печінки.
Синтезовані у печінці фосфоліпіди також надходять у кров в складі ліпопротеїнів і доставляються до позапечінкових тканин для оновлення мембранних структур. При зниженні синтезу фосфоліпідів внаслідок нестачі холіну швидкість виходу жирних кислот із печінки зменшується, що сприяє накопиченню жиру. Холін і речовини, які сприяють його синтезу в печінці, зокрема амінокислота метіонін, проявляють ліпотропну активність.
Печінка відіграє центральну роль і в обміні холестерину.
Вміст його в організмі підтримується на постійному рівні за допомогою регуляторних механізмів. У печінці синтезується близько 80 % холестерину організму. Біосинтез його регулюється за принципом негативного зворотного зв’язку. Тому при потраплянні в організм значної кількості холестерину з їжею синтез його гальмується, і навпаки. Крім того, синтез холестерину знаходиться під контролем інсуліну і глюкагону, тобто залежить від забезпечення організму поживними речовинами.
Під час транспорту із печінки до інших тканин холестерин включається у ЛДНГ, причому більша частина у формі ефірів. ЛДНГ після віддачі жиру тканинам перетворюються у плазмі в ЛНГ, які містять до 50 % ефірів холестерину. ЛНГ захоплюються клітинами різних тканин, де холестерин включається в склад мембран або використовується для утворення стероїдних гормонів чи вітаміну D. Надлишок холестерину переноситься від позапечінкових тканин до печінки у складі ЛВГ.
Виводиться холестерин із печінки в складі жовчі у кишечник. Друга частина холестерину в печінці йде на синтез жовчних кислот. Цей процес включає реакції вкорочення й окиснення бокового ланцюга з утворенням карбоксильної групи і реакцій гідроксилювання стероїдного ядра холестерину. Утворення парних жовчних кислот, тобто кон’югатів жовчних кислот з гліцином чи таурином, також здійснюється у печінці. Синтез жовчних кислот із холестерину регулюється за принципом негативного зворотного зв’язку, тому всмоктування жовчних кислот у кишечнику і надходження в печінку є одним із механізмів регуляції синтезу холестерину.
Азотовий обмін у печінці
Печінка займає ключову роль в обміні білків і амінокислот.
У клітинах печінки, на відміну від інших органів, є повний набір ферментів, що беруть участь в амінокислотному обміні. Амінокислоти, що всмоктуються у кишечнику, потрапляють з кров’ю ворітної вени у печінку і використовуються тут в різних шляхах обміну:
1) синтез білків;
2) розпад до кінцевих продуктів;
З) перетворення у вуглеводи та ліпіди;
4) взаємоперетворення амінокислот;
5) перетворення у низькомолекулярні азотовмісні речовини;
6) звільнення в кров і доставка до інших органів і тканин для синтезу там білків і низькомолекулярних азотових речовин.
Печінка бере участь і в метаболізмі амінокислот, що надходять за певних умов із периферичних тканин. Інтенсивно цей процес перебігає під час голодування організму. Крім того, клітини печінки (а також ряду інших органів) захоплюють білки гемолізованих еритроцитів, денатуровані білки плазми, білкові й пептидні гормони і за допомогою внутрішньоклітинних протеолітичних ферментів гідролізують їх до вільних амінокислот.
Для печінки характерна висока швидкість синтезу і розпаду білків, як тих, що функціонують у самій печінці, так і тих, що секретуються в кров. Оскільки в організмі немає резерву білків і амінокислот, подібного до резерву вуглеводів чи жирів, то у періоди недостатнього харчування деякі менш функціонально важливі білки печінки, як і ряду інших органів, розпадаються, а із амінокислот синтезуються більш необхідні в цих умовах ферменти, білки-рецептори тощо.
У печінці утворюється більшість білків плазми крові – 100 % альбуміну, близько 90 % альфа1-глобулінів, 75 % альфа2-глобулінів, 50 % бета-глобулінів, фактори згортання крові, білки-компоненти ліпопротеїнів плазми крові, фермент холінестераза. Швидкість їх оновлення досить висока, зокрема, щодня у печінці синтезується 12-16 г альбуміну. При ураженні паренхіми печінки настає зменшення вмісту в плазмі крові альбуміну, альфа-глобулінів, глікопротеїнів, фібриногену. Діагностично важливим є зниження вмісту насамперед трансферину, альбуміну, протромбіну, холінестерази. Період напіврозпаду альбуміну – 20-26 днів, тому при гострих гепатитах, якщо хвороба не триває декілька тижнів, рівень альбуміну плазми залишається у межах норми. За цих умов найціннішим прогностичним показником є визначення протромбінового часу (проби на згортання крові), оскільки період напіврозпаду факторів згортання крові – тільки 5-72 год. Швидко оновлюються і внутрішньопечінкові ферменти, їх утворення індукується харчовими факторами, рядом гормонів, що, в свою чергу, впливає на обмін речовин всього організму.
Ті амінокислоти, які не використані для синтезу білків у печінці чи інших органах, піддаються катаболізму чи перетворенню в інші речовини. Амінокислоти втрачають аміногрупу в результаті прямого чи непрямого дезамінування, а утворені кетокислоти різними шляхами надходять у цикл лимонної кислоти. Після споживання білкової їжі окиснювальний розпад амінокислот служить основним джерелом енергії у печінці. Вуглецеві скелети амінокислот можуть перетворюватись у вуглеводи, жирні кислоти, кетонові тіла.
Деякі амінокислоти є глікогенними, інші – і глікогенними, і кетогенними, а виключно кетогенною є лейцин. При голодуванні чи недостатньому надходженні вуглеводів з їжею за рахунок глюконеогенезу із амінокислот підтримується нормальна концентрація глюкози в крові і, таким чином, забезпечуються глюкозою мозок, еритроцити, мозкова речовина нирок. Джерелом амінокислот для глюконеогенезу в цих умовах служить розпад білків скелетних м’язів. Дезамінування амінокислот відбувається в основному в печінці. Виключенням є амінокислоти з розгалуженим ланцюгом (валін, лейцин, ізолейцин), які піддаються переамінуванню з альфа-кетоглутаратом у м’язовій тканині. Утворений глутамат передає аміногрупу на продукт гліколізу – піруват з утворенням аланіну. Останній переноситься кров’ю до печінки, де служить субстратом глюконеогенезу. Сукупність цих процесів розглядають як глюкозо-аланіновий цикл між м’язами і печінкою. Катаболізм м’язових білків при голодуванні активується глюкокортикоїдами і зменшенням вмісту в крові інсуліну.
У печінці токсичний аміак, продукт дезамінування амінокислот, амінів, пуринових і піримідинових основ, перетворюється у нешкідливу сечовину, яка дифундує у кров і через нирки виводиться з організму.
Фермент аргіназа, який каталізує заключну реакцію циклу утворення сечовини, знаходиться виключно у цитоплазмі гепатоцитів. При споживанні багатої білками їжі зростає вміст у печінці всіх ферментів циклу. При ураженнях печінки здатність її до синтезу сечовини тією чи іншою мірою знижується, що супроводжується гіперамоніємією, гіпераміноацидемією, аміноацидурією. Отруєння аміаком є важливим чинником печінкової коми.
У печінці здійснюється синтез замінних амінокислот при недостатньому їх споживанні. Таким чином, печінка може забезпечувати інші органи збалансованою сумішшю амінокислот, необхідною для синтезу білків.
Невелика кількість амінокислот перетворюється у печінці в низькомолекулярні азотовмісні речовини – пуринові і піримідинові нуклеотиди, гем, креатин, нікотинову кислоту, холін, карнітин, поліаміни. Швидкість синтезу цих речовин із амінокислот визначається потребою в них організму, а не концентрацією необхідних амінокислот. Катаболізм пуринових і піримідинових нуклеотидів також здійснюється у печінці.
Розщеплення гемоглобіну. Жовчні пігменти
Тривалість життя еритроцитів складає 110-120 днів. Еритроцити такого віку фагоцитуються макрофагами головним чином у селезінці, а також у кістковому мозку і печінці. Гем після звільнення з гемоглобіну повторно не використовується, його порфіриновий цикл перетворюється в жовчні пігменти, які виводяться з організму (рис.). І тільки залізо повторно застосовується для синтезу гемопротеїнів чи відкладається для запасання. Глобін гідролізується протеолітичними ферментами до амінокислот. Інші гемопротеїни (міоглобін, цитохроми, каталаза і пероксидази) розпадаються аналогічним чином.
Фермент ендоплазматичного ретикулума гемоксигеназа каталізує першу реакцію розпаду гему – розрив метинового містка між 2 пірольними кільцями внаслідок окиснення атома вуглецю до СО. При цьому утворюється пігмент зеленого кольору – вердоглобін (холеглобін), його молекула ще містить залізо і білок-глобін. Подальший розпад вердоглобіну відбувається самостійно і призводить до відщеплення заліза, білкового компонента й утворення одного з жовчних пігментів – білівердину. Одночасно спостерігається перерозподіл подвійних зв’язків і атомів водню в пірольних кільцях та метинових містках. Білівердин – пігмент зеленого кольору, побудований із чотирьох пірольних кілець, зв’язаних між собою лінійно за допомогою метинових містків (рис.).

Білівердинредуктаза відновлює білівердин до білірубіну, пігменту червоно-коричневого кольору. Частина білірубіну утворюється в печінці, а решта – в клітинах РЕС селезінки і кісткового мозку і повинна бути перенесена в печінку для подальших перетворень. Оскільки білірубін у воді малорозчинний, він транспортується кров’ю в комплексі з альбуміном (2 молекули білірубіну на 1 молекулу альбуміну).
У печінці відбувається відділення альбуміну і білірубін шляхом взаємодії з УДФ-глюкуроновою кислотою перетворюється в добре розчинний у воді білірубін-диглюкуронід. Реакцію кон’югації каталізує УДФ-глюкуронілтрансфераза.
Білірубін-диглюкуронід переходить у жовч і надходить у кишечник, де бактеріальні ферменти відщеплюють глюкуронову кислоту, після чого відновлюється білірубін до уробіліногену (мезобіліногену) і стеркобіліну. Основна частина стеркобіліногену виділяється з калом, окиснюючись на повітрі до стеркобіліну. Частина уробіліногену і стеркобіліногену всмоктується в кров і виділяється нирками в сечу. При окисненні у повітрі утворюються уробілін і стеркобілін. Уробіліноген і стеркобіліноген не мають кольору, а уробілін і стеркобілін оранжево-жовтого кольору. В нормі доросла людина за добу виділяє приблизно 250 мг жовчних пігментів із калом і 1-2 мг із сечею, невеличка частина уробіліногену (мезобіліногену), всмоктуючись, потрапляє через портальну вену в печінку, де розщеплюється до ди- і трипіролів або знову екскретується у жовч.
Якщо жовчні пігменти накопичуються в крові та інших рідинах організму внаслідок їх надлишкового утворення чи порушення виведення з організму, вони надають інтенсивного забарвлення шкірі. Такий стан називається жовтяницею.
Жовтяниця виявляюється, коли концентрація білірубіну в крові сягає 35 мкмоль/л або вище. Визначення концентрації жовчних пігментів у крові й сечі має важливе значення для диференціальної діагностики жовтяниць різного походження. Концентрація білірубіну в крові здорової людини дорівнює 8,5-20,5 мкмоль/л (5,0-12,0 мг/л), із них приблизно 75 % припадає на некон’югований білірубін, зв’язаний з альбуміном плазми. Для визначення білірубіну використовують реакцію з діазореактивом. Некон’югований білірубін називають непрямим, тому що він утворює з діазореактивом забарвлені продукти тільки при додаванні спирту, який звільняє білірубін із комплексу з альбуміном (непряма реакція). Білірубін-глюкуронід утворює забарвлені продукти з діазореактивом відразу і тому називається прямим, а також зв’язаним, або кон’югованим. Оскільки непрямий білірубін міцно зв’язаний з альбуміном плазми, він не фільтрується в клубочках нирок і не потрапляє в сечу. Прямий білірубін фільтрується в нирках і в нормі міститься в сечі в незначній кількості.
Розрізняють декілька видів жовтяниць. При гемолітичній (надпечінковій) жовтяниці із-за посиленого розпаду гемоглобіну підвищується концентрація в крові непрямого білірубіну. Така жовтяниця спостерігається при отруєнні деякими хімічними речовинами, зокрема сульфаніламідами, променевому ураженні, переливанні несумісної крові тощо.
Оскільки в цьому випадку зростає утворення в печінці білірубін-диглюкуроніду, то значно підвищується виділення з організму стеркобіліну й уробіліну. Білірубін у сечі не виявляється (табл. ).
Печінкова (паренхіматозна) жотяниця виникає внаслідок порушення здатності печінки утворювати білірубін-диглюкуронід і секретувати його в жовч (при вірусному та хронічному гепатиті, цирозі печінки). У результаті пошкодження паренхіми печінки жовч надходить не тільки в жовчні капіляри, а й у кров, де збільшується концентрація і прямого, і непрямого білірубіну. Виведення стеркобіліну й уробіліну знижується. У сечі виявляється прямий білірубін. Іноді в сечі хворих на гепатит при невеликій жовтяниці (чи повній її відсутності) знаходять надзвичайно високу кількість уробіліногену (мезобіліногену), що є наслідком порушення розщеплення його в гепатоцитах до три- і дипіролів. Уробіліноген потрапляє у велике коло кровообігу і виділяється із сечею.
При закупоренні жовчних проток і блокаді відтоку жовчі спостерігається обтураційна (підпечінкова) жовтяниця. Переповнені жовчні канальці травмуються і пропускають білірубін у кров’яні капіляри. У крові з’являється велика кількість прямого білірубіну, в меншій мірі збільшується концентрація непрямого білірубіну. Кількість уробіліногену в сечі знижується (або він повністю відсутній), а у великій кількості екскретується із сечею прямий білірубін. Через це сеча за кольором стає подібною до пива з яскраво-жовтою піною. Кал, у якому відсутні жовчні пігменти, стає сірувато-білим.
Відомі спадкові порушення надходження некон’югованого білірубіну з плазми в клітини печінки та процесу кон’югації білірубіну внаслідок дефекту глюкуронілтрансферази (синдроми Жільбера-Мейленграфта, Кріглера-Найяра). У крові хворих підвищується вміст непрямого білірубіну. Зустрічаються також спадкові гіпербілірубінемії, зумовлені переважним підвищенням у крові кон’югованого (прямого) білірубіну (синдроми Дубіна-Джонсона, Ротора). Молекулярний механізм цих захворювань невідомий.
У новонароджених дітей обмежена здатність утворювати білірубін-диглюкуронід і в крові може різко зростати концентрація непрямого білірубіну. Здатність печінки кон’югувати білірубін швидко зростає протягом перших декількох днів життя і тому жовтяниця новонароджених дітей у більшості випадків самовільно зникає.
У тяжких випадках жовтяниці новонароджених, особливо недоношених, дітей білірубін проявляє токсичну дію на мозок, що може призвести до незворотних розладів нервової системи і розумової відсталості. Для лікування дітей із тяжкими гіпербілірубінеміями виконують масивне переливання крові, застосовують лікарські препарати (барбітурати), які індукують синтез у печінці глюкуронілтрансферази, опромінюють УФ світлом, яке сприяє розпаду білірубіну до водорозчинних продуктів.
Дисбактеріоз кишечника, викликаний тривалим лікуванням антибіотиками тетрациклінового ряду, також може супроводжуватись порушенням обміну жовчних пігментів. За цих умов пригнічується ріст нормальної мікрофлори кишечника, яка відновлює білірубін до стеркобіліну. Тому при дисбактеріозі виділяються з калом проміжні продукти обміну білірубіну або і сам білірубін, який окиснюється киснем повітря в білівердин зеленуватого кольору.
Знешкодження токсичних речовин у печінці
В організм із навколишнього середовища потрапляють у невеликих кількостях різноманітні хімічні речовини, як природні, так і синтетичні, що не використовуються з пластичною метою чи для продукції енергії. Їх називають сторонніми речовинами або ксенобіотиками. До них відносяться харчові додатки, ліки, пестициди, гербіциди, інсектициди, косметичні засоби, хімічні продукти побутового користування, промислові отрути. В організмі вони можуть порушувати нормальні процеси обміну речовин, викликати отруєння і навіть смерть. Тому в процесі еволюції тварин і людини виробились механізми знешкодження (дезінтоксикації) речовин. Ці механізми полягають у метаболічних перетвореннях ксенобіотиків, які роблять їх більш водорозчинними, що пришвидшує виведення із організму через нирки. Метаболічні перетворення в основному зменшують токсичність сторонніх сполук, але у деяких випадках утворені водорозчинні речовини набувають ще більшої токсичності. Це, зокрема, стосується ряду канцерогенних речовин, які утворюються в організмі із неканцерогенних попередників.
Деякі ендогенні речовини також проявляють токсичні властивості і тому знешкоджуються. Це білірубін, аміак, біологічно активні аміни, продукти гниття амінокислот у кишечнику. Крім того, в організмі необхідно постійно переводити в неактивну форму гормони, медіатори після їх дії.
Реакції знешкодження токсичних та інактивації біологічно активних речовин перебігають, головним чином, у печінці. Продукти реакцій виділяються у жовч і виводяться через кишечник або в кров і виводяться з сечею. Як правило, відносно малі молекули виділяються у сечу, а більші (типу білірубіну) – у жовч. Процес знешкодження токсичних речовин поділяють на дві фази. У першій фазі біологічної трансформації ксенобіотики піддаються реакціям окиснення, відновлення, гідролізу й іншим, в результаті чого у молекулах з’являються полярні функціональні групи (‑ОН, -СООН, -SН, -С=О, -NН2). У другій фазі до функціональної групи ксенобіотика приєднуються глюкуронова чи сірчана кислоти, амінокислоти, метильна чи ацетильна групи, трипептид глутатіон. Це так звані реакції кон’югації, вони каталізуються специфічними ферментами. Утворені кон’югати добре розчинні у воді і легко виводяться з організму. Для більшості токсичних сполук процес знешкодження включає реакції обох фаз, але у деяких випадках тільки одну фазу – першу чи другу.
Реакції першої фази трансформації сторонніх речовин каталізують в основному ферменти ендоплазматичного ретикулуму печінки (ферменти мікросомального окиснення і відновлення). Мікросомальна окиснювальна система, яка включає цитохром Р450 і флавіновий фермент НАДФН-цитохром Р-450-редуктазу, каталізує реакцію гідроксилювання субстратів за рівнянням:
Ця система каталізує окиснення великої кількості субстратів, як нормальних клітинних компонентів, так і сторонніх речовин. Субстрати приєднуються до цитохрому Р‑450, тому субстратна специфічність визначається саме цим компонентом мікросомальної монооксигеназної системи, який існує у різних формах. Кожна з ізоформ цитохрому Р‑450 специфічна відносно групи тих чи інших субстратів. Мікросомальні монооксигенази каталізують, крім реакцій гідроксилювання, інші подібні за механізмом типи біологічного окиснення: епоксидування, дезалкілування, дезамінування, десульфування, сульфоокиснення.
В ендоплазматичному ретикулумі печінки містяться флавінові ферменти, які відновлюють сторонні речовини – нітро- і азосполуки до аміносполук. Донором воднів служить НАДФН.
Метаболічні перетворення ксенобіотиків каталізуються і немікросомальними ферментами. Зокрема, мітохондріальні амінооксидази каталізують окиснювальне дезамінування амінів до відповідних альдегідів. Крім екзогенних, їх субстратами є ендогенні аміни (катехоламіни, серотонін, гістамін) та аміни, які утворюються при гнитті амінокислот у кишечнику (кадаверин, путресцин, агматин). Ряд амінооксидаз зустрічається у плазмі крові. Фермент цитоплазми алкогольдегідрогеназа каталізує окиснення первинних спиртів до альдегідів, альдегідоксидаза і альдегіддегідрогеназа перетворюють альдегіди на карбонові кислоти. Мікросомальні і немікросомальні естерази каталізують гідроліз складних ефірів і амідів. Існує багато інших метаболічних перетворень ксенобіотиків.
Другу фазу трансформації сторонніх і ендогенних біологічно активних речовин складають реакції кон’югації.
1. Приєднання глюкуронової кислоти. Активною формою її є уридиндифосфатглюкуронова кислота (УДФГК), яка синтезується за такими реакціями:

Ферменти УДФ-глюкуронілтрансферази, що знаходяться у мікросомальній фракції, каталізують перенесення глюкуронової кислоти на різні функціональні групи органічних сполук з утворенням глюкуронідів. Такі кон’югати утворюють: 1) ендогенні субстрати: білірубін, стероїдні гормони, тироксин; 2) продукти гниття білків у кишечнику: фенол, крезол, індол і скатол (після їх окиснення до індоксилу і скатоксилу); 3) сторонні сполуки.
Наприклад, реакція кон’югації УДФГК з фенолом:

Глюкуронідні кон’югати мають бета-конфігурацію. Можуть утворюватись О-глюкуроніди, N-глюкуроніди, S-глюкуроніди. У багатьох тканинах організму тварин є фермент бета-глюкуронідаза, яка гідролізує кон’югати з вивільненням глюкуронової кислоти і відповідної органічної речовини. Можливо, функцією бета-глюкуронідази тканин є регуляція гормональної активності шляхом вивільнення активних гормонів із їх неактивних кон’югатів. Білірубіндиглюкуронід під дією бета-глюкуронідази жовчі і кишки переходить у вільний білірубін.
При спадковій відсутності чи зниженій активності глюкуронілтрансферази має місце печінкова спадкова жовтяниця (синдром Кріглера-Найяра). У печінці, крові, шкірі накопичується некон’югований білірубін.
2. Утворення складних ефірів сірчаної кислоти. Активною формою сірчаної кислоти в організмі є 3′-фосфоаденозин-5′-фосфосульфат (ФАФС). Цитозольні ферменти сульфотрансферази каталізують перенос сульфату від ФАФС до фенолів, спиртів та амінів. У людини сульфатній кон’югації піддаються стероїдні гормони і продукти їх метаболізму, продукти гниття білка в кишечнику (фенол, крезол, індоксил і скатоксил), сторонні речовини. Більшість таких речовин можуть утворювати кон’югати однаковою мірою з глюкуроновою і сірчаною кислотами. Схема реакції сульфатної кон’югації:
ROH+ФАФС ® R–OSO3H+ФАФ
3. Метилювання. Донором метильної групи служить S-аденозилметіонін. Його будова і участь у реакціях метилювання при біосинтезі різних біологічно активних речовин розглянуті у розд. 8.6. Декілька видів метилтрансфераз каталізують перенесення метильної групи від S‑аденозилметіоніну на такі ксенобіотики, як аміни, фенол і тіолові сполуки, а також на неорганічні сполуки сірки, селену, ртуті, арсену. Шляхом метилювання інактивуються катехоламіни, амід нікотинової кислоти (вітамін РР).
4. Ацетилювання. Цим шляхом знешкоджуються сторонні ароматичні аміни, ароматичні амінокислоти, сульфаніламідні препарати. Реакція полягає у перенесенні ацетильної групи від ацетил-КоА:
R–NH2+CH3–CO–SKoA ® R–NH–CO–CH3+KoASH
Виявлено, що для одних осіб характерна висока швидкість ацетилювання, а для інших – низька.
5. Кон’югація з гліцином. Цей шлях знешкодження ароматичних і гетероциклічних карбонових кислот здійснюється у 2 стадії. Спочатку утворюється коензим А – похідне сторонньої карбонової кислоти, наприклад бензойної:
![]()
На другій стадії відбувається пептидна кон’югація з амінокислотою гліцином:

Кон’югат бензойної кислоти і гліцину називається гіпуровою кислотою і у невеликій кількості утворюється в організмі людини із бензойної кислоти, яка є продуктом перетворення фенілаланіну ферментами мікрофлори товстої кишки.
Для оцінки знешкоджувальної функції печінки застосовують пробу на синтез гіпурової кислоти (пробу Квіка-Пителя). Вона полягає у пероральному прийомі бензоату натрію і визначенні в сечі кількості гіпурової кислоти.
6. Глутатіонова кон’югація. Сторонні речовини, різні за структурою, знешкоджуються шляхом кон’югації з трипептидом глутатіоном. Цей процес включає ряд етапів. Спочатку глутатіон-трансферази каталізують взаємодію субстрату (RХ) з відновленим глутатіоном:
![]()
Від глутатіонового кон’югата відокремлюються послідовно глутамінова кислота і гліцин. Утворені кон’югати ксенобіотиків з цистеїном можуть виводитись з сечею або в реакції ацетилювання перетворюватись у меркаптурові кислоти, які також виводяться із сечею:

Крім сторонніх речовин, кон’югати з глутатіоном утворюють у невеликій кількості білірубін, естрадіол, простагландини і лейкотрієни.
Синтез ферментів детоксикації в печінці індукується або гальмується різними речовинами. Типовим індуктором синтезу мікросомальних ферментів є фенобарбітал (снодійний середник). Індукція ферментів мікросомального окиснення, а також ферментів кон’югації, барбітуратами й іншими препаратами зумовлює звикання до таких ліків, оскільки при повторному використанні вони швидше інактивуються. При захворюваннях печінки дезінтоксикаційна функція порушується і може розвинутись підвищена чутливість до багатьох ліків.
Синтез ферментів мікросомального окиснення стимулюють канцерогенні поліциклічні вуглеводні (3,4-бензпірен, 3-метилхолантрен). Метаболізм бензпірену, як і деяких інших канцерогенів, призводить до утворення кінцевих канцерогенних метаболітів, що взаємодіють з генетичним апаратом клітини і викликають пухлинну трансформацію, або до утворення неканцерогенних продуктів метаболізму. Співвідношення процесів активації і дезактивації у різних людей зумовлює індивідуальну чутливість до канцерогенних агентів, зокрема бензпірену.