Пептиди. Білки.
План лекції:
1. Загальна характеристика білків та їх класифікація.
2. Елементарний склад білків.
3. Властивості білків:
а) молекулярна маса білків;
б) розчинність білків;
в) амфотерність білків;
г) гідроліз білків;
д) денатурація білків;
е) кольорові реакції білків.
4. Будова білків. Їх структура:
а) первинна
б) вторинна
в) третинна
г) четвертинна
Гідроліз білків.
a-Амінокислоти добувають шляхом лужного, кислотного або ферментативного гідролізу білків. При кислотному гідролізі відбуваються також побічні реакції, наприклад, глутамін аспарагін гідролізуються до глутамінової та аспарагінової кислот, а триптофан розкладається. Лужний гідроліз призводить до рацемізаії a-амінокислот. Тому найширше застосовується ферментативний метод гідролізу. Розділення a-амінокислот у білкових гідролізатах проводять за допомогою іонообмінної хроматографії.
Мікробіологічний синтез.
Деякі мікроорганізми в процесі своєї життєдіяльності виробляють певні a-амінокислоти. Ці мікроорганізми вирощують на багатих вуглеводами середовищах — крохмалі, меласі, патоці та ін. Таким способом добувають аспарагінову та глутамінову кислоти, триптофан, лізин та ін.
Хімічні властивості a-амінокислот
Раніше були розглянуті хімічні властивості амінокислот. Також подані реакції, котрі застосовуються у аналізі a-амінокислот, синтезі пептидів або лежать в основі перетворень a-амінокислот в організмі.
Реакції по аміногрупі
Утворення N-ацильниx похідних. При взаємодії a-амінокислот ангідридами або хлорангідридами карбонових кислот утворюють N-ацильні похідні, котрі відносно легко руйнуються до вихідних a-амінокислот. У зв’язку з цим реакція ацилювання використовуєте для блокування (захисту) аміногрупи при синтезі пептидів. Як ацилюючі реагенти використовують бензоксикарбонілхлорид (а) або трет-бутоксикарбоксазид (б):
Захисну карбобензоксигрупу видаляють каталітичним гідролнолізом або дією розчину бромоводню в оцтовій кислоті на холоді:
Трет-бутоксикарбонільну групу руйнують дією трифтороцтової кислоти:
Дезамінування.
Під дією азотистої кислоти a-амінокислоти перетвоорюються на відповідні a-гідроксикислоти:
Реакція застосовується в аналітичній практиці (метод Ван-Слайка). За об’ємом азоту, що виділився, визначають кількісний вміст a-амінокислоти.
В організмі a-амінокислоти піддаються окисному дезамінуванню. Реакція відбувається під дією ферментів оксидаз і окисного агенту коферменту НАД:
Трансамінування ( переамінування).
Процес проходить тільки в живих організмах. Реакція відбувається за участю ферментів трансаміназ і коферменту піридоксальфосфату між a-аміно- і a-кетокислотами та зводиться до взаємообміну аміно- та карбонільною групами:
Взаємодія з карбонільними сполуками. Формальдегід реагує з a-амінокислотами у водному розчині з утворенням N-гідроксиметильних похідних.
Реакцію покладено в основу кількісного визначення a-амінокислот методом формольного титрування за Серенсеном.
Інші альдегіди та кетони реагують з а-амінокислотами з утворенням основ Шиффа:
Взаємодія з фснілізотіоціапатом (реакція Едмана). При взаємодії a-амінокислот з фенілізотіоціанатом утворюються похідні З-феніл-2-тіогідантоїну. Спочатку в присутності лугу відбувається приєднання фенілізотіоціанату за аміногрупою a-амінокислоти, а потім при нагріванні продукту приєднання в присутності мінеральної кислоти відбувається циклізація з утворенням похідного фенілтіогідантоїну (ФТГ-похідного):
Реакція використовується для установлення будови пептидів (деградація за Едманом).
Взаємодія з 2,4-динітрофторбензолом (реактив Сетера). При взаємодії a-амінокислот з 2,4-динітрофторбензолом (ДНФБ) утворюється N-динітрофенільне похідне (ДНФ-похідне):
Реакція проходить за механізмом SN. Використовується для визначення будови пептидів.
Реакції по карбоксильній групі
Утворення хелатних сполук.
Характерною особливістю a-амінокислот є здатність утворювати міцні хелати комплексні солі з іона важких металів, наприклад:
Незначна розчинність та інтенсивне забарвлення хелатів міді (II) дозволяє використовувати їх в аналітичній практиці для виявлення a-амінокислот.
Утворення складних ефірів. Як карбонові кислоти a-амінокислоти при взаємодії зі спиртами утворюють складні ефіри:
Складні ефіри a-амінокислот розчинні в органічних розчинниках, леткі та добре переганяються. Ці властивості їх використовуються при розділенні суміші a-амінокислот у білкових гідролізатах. З цією метою a-амінокислоти спочатку етерифікують, а потім одержані ефіри піддають перегонці. Для розділення суміші складних ефірів a-амінокислот нині застосовують метод газо-рідинної хроматографії (ГРХ). Ця реакція служить також зручним методом захисту карбоксильної групи при синтезі пептидів.
Утворення галогенангідридів і ангідридів. Аналогічно карбоновим кислотам, a-амінокислоти утворюють галогенангідриди та ангідриди. Перед проведенням реакції спочатку захищають аміногрупу утворенням N-ацильних похідних.
Декарбоксилювання. У зв’язку з наявністю біля a-вуглецевого атома двох сильних електроноакцепторних груп карбоксильної та аміногрупи a-амінокислоти відносно легко декарбоксилюються:
Ідентифікація a-амінокислот
Нінгідринна реакція. Для виявлення a-амінокислот використовується реакція з нінгідрином, в результаті котрої утворюється продукт, забарвлений в синьо-фіолетовий колір з максимумом поглинання при 570 нм:
Нінгідриновий реактив застосовується в хроматографічному аналізі для проявлення хроматограм на папері та в тонкому шарі сорбенту, а також для кількісного колориметричного визначенні a-амінокислот.
Ксантопротеїнова реакція. Це реакція з концентрованою азотною кислотою на a-амінокислоти, що містять у своїй молекулі ароматичні цикли. В результаті останньої відбувається нітрування ароматичного циклу з утворенням нітропохідного, забарвленого у жовтий колір.
Вміст білків:
В м’язах людини – 80%
В шкірі – 63%
В печінці – 57%
В мозок – 45%
В кістках – 28%
Загальна характеристика білків та їх класифікація.
Азотовмісні високомолекулярні сполуки природного походження – білки.
Із органічних речовин, що входять в склад живих організмів, найбільш важливі в біологічному відношенні і найбільш складні по хімічній структурі є якраз білки. З ними ми зустрічаємось всюди, там де має місце життя, та його прояви.
Термін „білки” виник вперше в зв’язку із знаходженням в тканинах тварин і рослин речовин, що подібні по деяких своїх властивостях з яєчним білком (при нагріванні вони розкладаються). Ці речовини Мульдер в 1838 р. назвав протеїнами (з грец. proteous – перший), тобто вони є важливими складовими живої матерії, без якої неможливе життя. Тепер слово „білки” це збірне поняття для цілого класу речовин, які мають багато спільного в складі та властивостях, що присутні в кожній живій клітині і утворюють там основну масу протоплазми.
Класичне визначення ролі білків як основи живого дано сто років тому що „життя це форма існування білкових тіл”. Ця фраза стала крилатою, в ній підкреслюється вирішальне значення білків для життя.
Всі білки в залежності від будови діляться на прості і складні.
Протеїни – практично зустрічаються в усіх тваринних і рослинних клітинах, в більшості рідин організму (плазмі крові, сиворотці молока і т.д.).
Амбуліни менші по масі від глобулінів та розинні у воді, а глобуліни в нейтральних солях. Прості білки складаються тільки з амінокислот.
Склдні білки – складаються з білкової та небілкової групи.
а) нуклеопротеїни – небілкова частина відноситься до нуклеїнових кислот;
б) небілкова частина хромопротеїнів забарвлені сполуки;
в) фосфопротеїни – мають у складі залишки фосфорної кислоти;
г) ліпопротеїни – небілкова частина –ліпіди;
д) глюкопротеїни – небілкова частина – вуглеводи.
Вони контролюють тисячі хімічних реакцій: біоенергетика, живлення, дихання, м’язове скорочення, білкові гормони розкачують маятник наших емоцій, імунітет теж залежить від білків.
2. Елементарний склад білків.
Формули білків:
гемоглобін – С3032Н4876О872N780S6Fe4
При вивченні хімічної структури простого білка було встановлено, що основною його структурною одиницею – мономером – являються амінокислоти.
Таким чином білки – це високомолекулярні, органічні, N – вмісні біополімери, які складаються в основному з амінокислот.
Амінокислота”’ — це азотовмісна карбонова кислота, тобто — це хімічна сполукаа, молекула якої одночасно містить аміногрупу –NH2 та карбоксильну групу –СООН, і вуглецевий скелет. За тим, до якого атому вуглецю приєднана аміно- група, амінокислоти поділяються на α, β, γ При цьому α-амінокислотами називаються такі, в яких карбоксильна та [[аміногрупа]] приєднані до одного і того ж атому вуглецю; β-амінокислотами — такі, де аміногрупа приєднана до атому вуглецю, сусіднього з тим, до якого приєднана карбоксильна
До складу протеїнів входять 20 α-амінокислот, які кодуються генетичним кодом і називаються протеїногенними або стандартними амінокислотами. Окрім них в організмі продукуються і інші амінокислоти, що називаються непротеїногенними або нестандартними. Одна із стандартних амінокислот, [[пролін]], має вторинну аміногрупу (=NH замість –NH2 , яка також часто називається іміногрупою.
3. Властивості білків і будова амінокислот.
а) Молекулярна маса білків – для визначення молекулярної маси існує ряд методів:
кріоскопічний. осмометричний, седиментації
Найбільш точним є метод седиментації який проводиться в ультрацентрифузі. Він заснований на різній швидкості осадження білків в залежності від молекулярної маси: з великою масою білки осідають при малій швидкості руху ротора центрифуги, а білки з малою масою – при високих швидкостях його руху.
Вивчення різних білків показало, що всі вони мають велику молекулярною масою. Молекулярна маса їх виражається десятками, сотнями і тисячами, а в деяких білків і декілька мільйонів.
альбумін) – 36000
гемоглобін) – 152000
м’язи (міозин) – 500000
б) розчинність білків
Ми вже згадували класифікуючи білки, що одні з них альбуміни розчинні у воді, а глобуліни тільки в нейтральних солях. А є білки, що зовсім не розчиняються.
Розчинні білки утворюють колоїдні розчини.
в) амфотерність білків
NH2 – аміногрупа – гр. основ. орг.
О
∕∕
-С – карбоксильна гр. – гр. орг. кислот.
\
ОН
Амінокислоти будуть себе проявляти як основи взаємодіючи з кислотами, і як кислоти взаємодіючи з основами.
Отже, амінокислоти це органічні амфотерні сполуки.
Амінокислоти можуть реагувати між собою з утворенням пептидних зв*язків:
20 амінокислот , що входять до складу білків
Аланін |
Лейцин |
Аргінін |
Лізин |
Аспарагін |
Метіонін |
Аспарагінова кислота |
Пролін |
Валін |
Серин |
Гістидин |
Тирозин |
Гліцин |
Треонін |
Глутамін |
Триптофан |
Глютамін |
Феніламін |
Глютамінова кислота |
Цистеїн |
Ізолейцин |
|
г) гідроліз білків
Для вивчення хімічного складу білків застосовують гідроліз – процес розщеплення білків на складові частини при участі води і нагрівання.
Гідроліз буває:
Кислотний лужний ферментативний
для кислого гідролізу використовують концентровані розчини H2SO4 i HCl і нагрівання при 100-1100С.
Для лужного – використовують розчини лугів.
ферментативний проходить з участю ферментів (біологічних каталізаторів) і при температурі 37-380С.
Кінцевими продуктами гідролізу простих білків являються тільки амінокислоти.
д) денатурація білка
Під впливом різних фізичних і хімічних факторів – високої температури, ряду хімічних речовин, опромінення, механічної дії – слабкі водневі зв’язки що підтримують вторинну і третинну структури (але не первинну, рвуться і молекула розгортається).
В результаті денатурації властивості білка змінюються. Він втрачає розчинність, стає доступним дії травних ферментів втрачає властиві йому функції. Явище денатурації процес оборотний, тобто розгорнутий поліпептидний ланцюг здатний знову закрутитися в спіраль.
Цю властивість денатурації використовують в клініці, коли при отравленні важкими металами хворому дають пити молоко або сирі яйця, щоб метали денатуруючи білки цих продуктів адсорбувалися на їх поверхні і не діяли на слизові стінок кишечнику і не всмоктувалися в кров.
) кольорові реакції
Білки дають характерні кольорові реакції за якими можна розпізнати серед інших речовин. Наприклад, від азотної концентрованої кислоти з’являється жовте забарвлення.
Так звана біуретова реакція дає синьо-фіолетове забарвлення, коли до білка додати розчину NaOH + CuSO4.
Будова білків. Їх структура: первинна, вторинна, третинна, четвертинна.
Білки – це високомолекулярні, органічні, азотовмісні біополімери, які складаються з амінокислот.
В поліпептидних ланцюгах амінокислотні залишки повторюються багато разів. При цьому кожний індивідуальний білок має свою строгу послідовність амінокислотних ланок.
Так як в алфавіті з букв складаються слова, так з 20 амінокислот може утворитися безмежна кількість білків.
Специфічна, унікальна для кожного окремого білка послідовність амінокислот – наз. первинною структурою.
В поліпептидних ланцюгах амінокислотні залишки повторюються багато разів. При цьому кожний індивідуальний білок має свою строгу послідовність амінокислотних ланок.
Так як в алфавіті з букв складаються слова, так з 20 амінокислот може утворитися безмежна кількість білків.
Специфічна, унікальна для кожного окремого білка послідовність амінокислот – називається. первинною структурою білка. Послідуючі дослідження показали, що поліпептидний ланцюг знаходиться в закрученому вигляді -спіралі. Дана спіралізація забезпечується водневими зв’язками, які виникають між залишками карбоксильних і амідних груп, розміщених на протилежних витках спіралі.
Скручений в спіраль поліпептидний ланцюг, що з’єднаний водневими зв’язками дає нам – вторинну структуру білка Ще складнішу просторову конфігурацію білка має третинна структура білка. Третинна структура підтримується взаємодією між функціональними групами R–поліпептидного ланцюга.
Зближення – може давати сольовий місток, карбоксильна з гідроксилом дає складноефірний місток, атоми сірки дисульфідні (-S–S-) містки.
Третинна структура зумовлює специфічну біологічну активність білка. У живих організмах є ще складніші конфігурації білка типу четвертинного структури.
ферменти – це білки
За хімічною природою ферменти – це білки, що проявляють каталітичні властивості, тобто вони прискорюють перебіг різних хімічних процесів, які відбуваються в живому організмі. Ферментам притаманні всі фізико-хімічні властивості білків: висока молекулярна маса, розщеплення до амінокислот під час гідролізу, утворення колоїдоподібних розчинів; вони не стійкі до впливу високих температур та солей важких металів, проявляють антигенні властивості, піддаються фракціонуванню. Як і білки, ферменти поділяються на прості й складні. Прості, або однокомпонентні, ферменти містять у своєму складі тільки амінокислоти. Наприклад, пепсин, уреаза, РНКаза та інші. Більшість ферментів є двокомпонентними, тобто складаються з білкової і небілкової (простетичної) частин. Їх називають ще голоферментами, а їх складові, відповідно, апоферментами (білкова частина) і простетичною групою, або коферментом (небілкова частина ферменту)
Простетична група міцно і постійно зв’язана з апоферментом. Якщо небілкова частина ферменту зв’язана з апоферментом непостійно, тобто знаходиться в дисоційованому стані й приєднується до апоферменту тільки під час каталітичного процесу, то її називають коферментом, іноді – кофактором.
Усе ж термін кофактор більше вживається в тих випадках, коли небілкова частина ферменту представлена якимось мікроелементом (металом), якому притаманна ще й функція активатора. Загалом, небілкова частина складного ферменту – низькомолекулярна і термостабільна, тоді як білкова – високомолекулярна і термолабільна. Важливо, що апофермент і кофермент проявляють ферментативні властивості тільки при їх поєднанні.
Апофермент у складному ферменті вказує на тип перетворень, відповідає за так звану специфічність дії ферменту. Небілкова частина голоферменту сприяє зв’язуванню ферменту з речовиною, на яку він діє (субстратом), здійснює передачу електронів, атомів, іонів з однієї речовини в іншу. Важливо, що одна і та ж небілкова речовина в одних ферментах може бути зв’язана з білковою міцно (як простетична), а в інших – слабо, і то лише під час реакції (кофермент). Наприклад, ФАД легко відщеплюється від білкової частини оксидази D‑амінокислот, а з ферментами тканинного дихання він утворює міцний зв’язок.
Білки складають 18-20 % від загальної маси і близько 50 % сухої маси тіла людини. В організмі масою 70 кг є 12-15 кг білків. На відміну від вуглеводів і жирів, в організмі немає резервних білків. У той же час білки відіграють надзвичайно важливі функції в організмі ( пластична, каталітична, енергетична, деякі білки проявляють властивості гормонів, виконують захисну функцію і т.п.). Це означає, що білки дуже динамічні структури, в організм вони постійно надходять із харчовими продуктами, синтезуються, розкладаються, перетворюються в інші речовини.
Організм може тривалий час обходитись без жирів або вуглеводів, але виключення із раціону білків навіть на короткий час призводить до значних порушень, а іноді – до незворотних патологічних змін. За добу в організмі людини оновлюється близько 400 г білків, тобто стільки розпадається до амінокислот і стільки ж синтезується. Частина амінокислот, утворених при розпаді білків, використовується для біосинтезу нових білків із поповненням енергії у вигляді АТФ або перетворюється в непептидні речовини (аміни, гем, тироксин, холін, таурин тощо). Це означає, що для поповнення втрачених під час метаболізму амінокислот організм повинен постійно одержувати білки з продуктами харчування. Під час травлення в шлунково-кишковому тракті білки розпадаються до амінокислот. Утворені амінокислоти використовуються для синтезу білків організму, а також небілкових азотових речовин.
Оскільки на частку білків і вільних амінокислот припадає більше 95% всього азоту в організмі, то за азотовим балансом, тобто різницею між кількістю азоту, що надходить з їжею, і кількістю азоту, що виводиться з організму (переважно у вигляді сечовини), можна оцінювати загальний білковий обмін. Розрізняють три види азотового балансу. В дорослої здорової людини при нормальному харчуванні спостерігається азотова рівновага (нульовий азотовий баланс), тобто кількість азоту, що надходить, дорівнює кількості, що виділяється з організму.
Позитивний азотовий баланс буває під час росту організму, вагітності, одужання після виснажливих захворювань. За цих умов кількість азоту, що надходить в організм, більша за кількість азоту, що виводиться з організму, тобто загальна білкова маса в організмі збільшується.
Негативний азотовий баланс вказує на збільшення кількості азоту, що виводиться з організму, порівняно з надходженням. Він спостерігається в похилому віці, при виснажливих захворюваннях, білковому або повному голодуванні. В цих випадках загальна маса білків в організмі зменшується.
Повне виключення білка з їжі призводить до швидкого розвитку негативного азотового балансу, що виражається щоденною втратою близько 4 г азоту, тобто 25 г білка. Це означає, що за умов виключення білка з їжі та при достатньому надходженні всіх інших харчових продуктів за добу організм тратить близько 25 г тканинних білків. У разі повного голодування втрата білків ще більша, оскільки в такому випадку амінокислоти, що утворюються при розпаді тканинних білків, будуть використовуватися і для забезпечення енергетичних потреб організму. Максимальна кількість азоту, що екскретується за цих умов, складає близько 20 г на день, тобто розкладається близько 125 г білка. Тривале голодування, як і повне голодування, неодмінно призводить до смерті. Наслідки білкового голодування: порушення фізичної і психічної активності, зниження вмісту білків плазми, що спричиняє порушення колоїдно-осмотичної рівноваги, набряки, зниження синтезу білків м’язів, недокрів’я, ослаблення діяльності серця, порушення імунітету.
Як було сказано вище, у дорослої людини при нормальному харчуванні має місце азотова рівновага. Якщо в умовах азотової рівноваги підвищити кількість білка в їжі, то азотова рівновага незабаром відновиться, але вже на вищому рівні. Таким чином, азотова рівновага може встановлюватись при значних коливаннях вмісту білка в їжі. Мінімальна кількість білка в раціоні, достатньому за калорійністю, при якій підтримується азотова рівновага, складає 30-50 г. Оптимальним для підтримання нормального стану дорослого організму є споживання 80-100 г повноцінного білка (при важкій фізичній роботі – 100-150 г). У США потреба білка вираховується з розрахунку 1 г на кілограм маси людини.
Висока швидкість синтезу білка точно зрівноважується швидкістю його розпаду. Регуляція обміну білків здійснюється групою гормонів. Зокрема, інсулін, соматотропін, тироксин, чоловічі й жіночі статеві гормони у фізіологічних умовах стимулюють біосинтез білків. Глюкокортикоїди гальмують синтез білків у більшості тканин, за винятком печінки, і стимулюють використання амінокислот для глюконеогенезу.
Фактори, що впливають на білковий обмін:
1) вік;
2) фізіологічний стан організму;
3) нервово-гормональний статус;
4) фізичне навантаження;
5) характер харчування (кількісний і якісний склад білків їжі, а також надходження з нею вуглеводів, ліпідів, вітамінів, мінеральних солей).
Фізіологічна потреба у білку
Наукове обґрунтування фізіологічної потреби у білку відбувається за азотистим балансом. Якщо людина знаходиться на безбілковому харчовому раціоні, то втрати азоту з сечею, калом та потом становлять 85 мг на 1 кг маси тіла. Тоді мінімальна норма споживання білка буде: (85 мг o 6,25) = 0,5 г на 1 кг маси тіла. Така кількість білків забезпечить рівновагу між процесами синтезу та розпаду їх в організмі людини. Враховуючи рівень засвоюваності білків, стресові ситуації, фізичні навантаження, безпечний рівень споживання білків становить 0,75 г на 1 кг маси тіла, а максимальний – 1,1 г. Таким чином:
мінімальна потреба у білках – 0,5 г на 1 кг маси тіла |
оптимальна потреба у білках – 0,75 г на 1 кг маси тіла |
максимальна потреба у білках – 1,1 г на 1 кг маси тіла |
забезпечує азотисту рівновагу і є нижньою межею безпеки, яка задовольнить потребу у білку для 60 % населення. |
забезпечує поправку на стресову ситуацію (20 %) і забезпечує засвоюваність білків (30 %). |
забезпечує витрати на фізичну працю (40 %), є верхня межа безпеки і задовольнить потребу у білку для 95 % населення. Для спортсменів, військовослужбовців потреба у білку – 2 г на 1 кг маси тіла, для підлітків та чоловіків у період виконання ними репродуктивної функції – 2,5-3 г. |
Потреба у білках залежить від енерговитрат і становить при енерговитратах більше 3000 ккал – 11 %, 2500-3000 ккал – 12 %, 2000-2500 ккал – 13 % від енергоцінності раціону.