ОБМІН ГЛІКОГЕНУ; ГЛЮКОНЕОГЕНЕЗ. РЕГУЛЯЦІЯ ТА ПАТОЛОГІЇ ВУГЛЕВОДНОГО ОБМІНУ. ЦУКРОВИЙ ДІАБЕТ

26 Червня, 2024
0
0
Зміст

Синтез глікогену

n

Для синтезу полісахаридних ланцюгів глікогену глюкозо-6-фосфат повинен спочатку перетворитись у більш реакційноздатну форму – уридиндифосфатглюкозу (УДФ-глюкозу), яка є безпосереднім донором ­залишків глюкози в процесі синтезу. УДФ-глюкоза утворюється за дві реакції. 1. Перетворення глюкозо-6-фосфату у глюкозо-1-фосфат під дією фосфоглюкомутази. 2. Взаємодія глюкозо-1-фосфату з уридинтрифосфатом (УТФ), що каталізується глюкозо-1-фосфатуридилтрансферазою (УДФ-глюкозопірофосфорилазою). Пірофосфат (ФФН) відразу ж гідролізується пірофосфатазою до двох молекул неорганічного фосфату, тому реакція йде у напрямку незворотного утворення УДФ-глюкози. Далі залишок глюкози з УДФ-глюкози переноситься на кінець уже існуючої молекули глікогену. Реакцію каталізує глікогенсинтаза, яка відноситься до трансфераз, а не до синтетаз. У цій реакції утворюється новий альфа-1,4-глікозидний зв’язок між першим атомом вуглецю залишку глюкози, який приєднується, і гідроксилом у С-4 кінцевого залишку глюкози ланцюга глікогену. УДФ, який вивільняється, перетворюється знову в УТФ за рахунок АТФ (УДФ + АТФ ® УТФ + АДФ). Реакція багаторазово ­повторюється.При відсутності у клітинах молекул глікогену, наприклад, коли внаслідок голодування запаси його повністю вичерпані, залишок глюкози із УДФ-глюкози переноситься на гідроксильну групу специфічного білка з подальшим нарощуванням вуглеводного ланцюга. Тому молекули глікогену містять сліди білка.

n

Утворення альфа-1,6-глікозидних зв’язків, які знаходяться у місцях розгалуження глікогену, каталізує фермент глікозил-(4®6)-трансфераза (фермент розгалужень). Це відбувається шляхом відриву фрагмента із 5 – 7 залишків глюкози із кінця лінійного ланцюга і перенесення його на гідроксил 6‑го вуглецю залишку глюкози, розміщеного ближче до внутрішньої частини молекули.

n

Після цього глікогенсинтаза приєднує до ланцюгів нові залишки глюкози. Точки розгалужень утворюються приблизно через кожні 8 – 12 залишків вздовж альфа-1,4-ланцюга. Така сильно розгалужена структура глікогену має важливе значення. По-перше, вона забезпечує наявність великої кількості кінців у молекулі, що забезпечує швидке ­приєднання чи звільнення молекул глюкози. Тому сильно розгалужена структура глікогену вигідніша, ніж менш розгалужена структура крохмалю. І, по-друге, цим досягається компактність, щільність упаковки молекул, які депонуються у клітинах у вигляді гранул діаметром 20 мкм. Із ­гранулами зв’язані ферменти синтезу й розпаду глікогену. Молекулярна маса молекул значно коливається (105-108).

n

Основні запаси глікогену в організмі містяться в скелетних м’язах і печінці. Вміст у печінці складає 2-8 % маси органа і залежить від регулярності харчування і фізичного навантаження. Концентрація глікогену в скелетних м’язах, що знаходяться у стані спокою, – тільки 0,5-1 %, але із-за великої маси м’язів більша частина глікогену тіла знаходиться в них. У середньому у дорослої людини після споживання їжі міститься в печінці близько 100 г глікогену, а в м’язах (стан спокою) – 400 г. Глікоген м’язів служить джерелом енергії під час скорочення м’язів, а функція глікогену печінки – підтримувати постійність концентрації глюкози в крові.

n

Розпад глікогену

n

Шлях розпаду глікогену до вільної глюкози відрізняється від синтезу його. Він включає ряд інших ферментів. Глікоген-фосфорилаза каталізує першу реакцію катаболізму глікогену – розрив альфа-1,4-глікозидного зв’язку між залишками глюкози на кінцях ланцюгів шляхом фосфоролізу, тобто взаємодії з неорганічним фосфатом. Крайні залишки глюкози відщеплюються у формі глюкозо-1-фосфату. Таким чином, спосіб розриву альфа-1,4-глікозидних зв’язків глікогену в тканинах відрізняється від гідролітичного розриву їх під дією амілази у ШКТ. Фосфорилазна реакція повторюється до тих пір, поки не залишаються 4 глюкозні залишки до точки розгалуження. Тоді фермент альфа-(1®6)-глікозидаза переносить триглюкозний фермент на кінець сусіднього ланцюга, а четвертий залишок глюкози, який зв’язаний альфа-1,6-глікозидним зв’язком, відщеплює гідролітичним шляхом у вигляді вільної глюкози. Далі глікоген-фосфорилаза каталізує відщеплення глюкозних залишків до нової точки розгалуження.

n

Молекули глюкозо-1-фосфату перетворюються у глюкозо-6-фосфат під впливом фосфоглюкомутази, яка каталізує цю ж реакцію у зворотному напрямку в процесі біосинтезу глікогену. Перехід глюкозо-6-фосфату до вільної глюкози не може здійснюватись шляхом гексокіназної реакції, оскільки вона незворотна. У печінці і нирках є фермент глюкозо-6-фосфатаза, який каталізує реакцію гідролізу глюкозо-6-фосфату до глюкози. Вільна глюкоза виходить у кров і надходить в інші органи. У м’язах, мозку й інших тканинах глюкозо-6-фосфатаза відсутня. Таким чином, глікоген печінки служить джерелом глюкози для всього організму, а глікоген м’язів, мозку розпадається до глюкозо-6-фосфату, який використовується у цих тканинах.

n

Розпад глікогену до молочної кислоти (глікогеноліз)

n

Субстратом гліколізу в м’язах служать глюкоза, яка надходить із крові, і глюкозні залишки депонованого глікогену. Внаслідок послідовної дії ­глі­когенфосфорилази і фосфоглюкомутази глюкозні залишки глікогену ­перетворюються в глюкозо-6-фосфат, який далі включається в процес гліко­лізу:

n

За умов глікогенолізу АТФ затрачається тільки один раз для утворення фруктозо-1,6-дифосфату. Якщо ж врахувати затрати АТФ для біосинтезу глікогену (дві молекули АТФ для включення одного залишку глюкози), тоді чистий вихід складає тільки 1 молекулу АТФ на 1 залишок глюкози. Витрачання АТФ для синтезу глікогену в м’язах має місце в стані спокою, коли депонування глікогену достатньо забезпечене киснем і енергією. А під час інтенсивного фізичного навантаження анаеробний розпад глікогену до молочної кислоти зумовлює більший вихід АТФ, ніж розпад глюкози.

n

Спадкові порушення обміну глікогену

n

Відомі спадкові хвороби, пов’язані з дефектом якогось одного із ферментів обміну глікогену. Їх називають глікогенозами, чи глікогеновими хворобами. В табл. 8.2 наведені типи глікогенозів і їх характеристика.

n

При нестачі глікогенсинтази в печінці значно знижується вміст глікогену, в проміжках між споживанням їжі швидко настає зменшення концентрації глюкози в крові, а після надходження значної кількості вуглеводів спостерігається тривала гіперглікемія. Нестача ферментів розпаду глікогену зумовлює його накопичення в тканинах. При цьому структура глікогену може бути нормальною або, при відсутності альфа‑(1®6)-глюкозидази, аномальною, з дуже короткими боковими гілками. У хворих спостерігаються характерні для кожного типу клінічні симптоми: збільшення печінки (тип І, ІІІ, VI), м’язова слабість (тип V), затримка розумового розвитку і корчі внаслідок виражених гіпоглікемій (тип І). Нестача глікозил-(4®6)-трансферази також призводить до аномальної структури глікогену – з довгими малорозгалуженими ланцюгами. І хоч при цьому типі глікогенозу (IV) кількість глікогену може бути зниженою чи нормальною, але внаслідок, вірогідно, реакції організму на саме таку структуру молекул глікогену настають печінкова недостатність і смерть у ранньому віці. Рання смерть спостерігається і при глікогенозі типу ІІ (хворобі Помпе), коли відсутній фермент лізосом альфа-глюкозидаза. В нормі під дією цього ферменту розпадається тільки 1-3 % глікогену клітин печінки, м’язів, серця. При відсутності альфа-глюкозидази глікоген накопичується у вакуолях цитоплазми клітин.

n

Регуляція метаболізму глікогену

n

Регуляторні ферменти синтезу і розпаду глікогену – глікогенсинтаза і фосфорилаза.

n

Активність їх регулюється двома шляхами – ковалентною модифікацією (фосфорилюванням) молекули ферменту і під дією алостеричних ефекторів. Глікогенсинтаза існує в неактивній фосфори­льованій формі й активній нефосфорильованій формі. Навпаки, неактивна форма глікогенфосфорилази (фосфорилаза b) є нефосфорильованою, а активна форма, фосфорилаза a, фосфорильована. Реакцію фосфорилювання глікогенсинтази каталізує цАМФ-залежна протеїнкіназа, а фосфорилази – цАМФ-залежна кіназа фосфорилази b. Під час реакції фосфатна група переноситься із АТФ на гідроксильну групу двох залишків серину молекул глікогенсинтази і фосфорилази b. Ферменти фосфопротеїнфосфатази каталізують протилежну реакцію – відщеплюють фосфатні групи шляхом гідролізу, тобто переводять глікогенсинтазу і фосфорилазу в дефосфорильовану форму.

n

Підкреслимо, що фосфорилювання зумовлює активацію фосфорилази й інактивацію глікогенсинтази, а дефосфорилювання – протилежні ефекти. Таким чином, якщо стимулю­ється синтез глікогену, то одночасно гальмується його розпад, і навпаки.

n

Активність кіназ і фосфатаз, а значить, синтез і розпад глікогену, знаходяться під гормональним контролем. Синтез глікогену стимулює інсулін, а розпад – адреналін і глюкагон. Дія адреналіну і глюкагону опосередковується через вторинний посередник – цАМФ. Зв’язування їх зі своїми рецепторами, локалізованими у клітинній мембрані, зумовлює активацію аденілатциклази, яка каталізує синтез цАМФ із АТФ. цАМФ активує протеїнкіназу. Неактивна протеїнкіназа складається із двох каталітичних і двох регуляторних субодиниць. При підвищенні концентрації у клітині цАМФ він зв’язується з регуляторними субодиницями, що викликає розпад тетрамерної форми протеїнкінази. Звільнені каталітичні субодиниці протеїнкінази каталізують реакцію фосфорилювання кінази фосфорилази, що переводить її в активну форму і таким чином зумовлює утворення фосфорилази a. Одночасно каталітичні субодиниці протеїнкінази каталізують фосфорилювання глікогенсинтази, тим самим перетворюючи її в неактивну форму.

n

Багатостадійність передачі сигналу від гормону до фосфорилази, яка безпосередньо каталізує розпад глікогену, має важливе значення, оскільки в такому каскадному процесі досягається сильне і швидке підсилення сигналу. Так, зв’язування декількох молекул адреналіну ­зумовлює синтез більшої кількості молекул цАМФ, а далі кожна молекула ферменту активує велику кількість молекул наступного ферменту (протеїнкіназа – кіназа фосфорилази – фосфорилаза). Активність фосфорилази досягає ­максимуму вже через декілька хвилин після зв’язування адреналіну клітинами печінки, а підсилення сигналу складає близько 25 млн раз (декілька молекул гормону викликають надходження із печінки в кров декількох грам глюкози). Послідовність реакцій, що призводить до інактивації глікогенсинтази, має на одну стадію менше, ніж послідовність активації фосфорилази.

n

Тому підсилення гормонального сигналу більше у системі розпаду глікогену. Максимальна швидкість синтезу глікогену м’язів не перевищує 0,3 % максимальної швидкості глікогенолізу.

n

При припиненні секреції адреналіну чи глюкагону аденілатциклаза переходить в неактивний стан. Наявний цАМФ розпадається під дією фосфодіестерази до АМФ, і в результаті утворюється тетрамерна неактивна форма протеїнкінази. Фосфатази каталізують дефосфорилювання кінази фосфорилази, фосфорилази а і глікогенсинтази. Таким чином, виключається розпад глікогену і стає можливим його синтез.

n

Адреналін стимулює розпад і гальмує синтез глікогену в печінці, скелетних м’язах, міокарді. Секреція його у стресових ситуаціях зумовлює вивільнення глюкози із печінки в кров для постачання інших органів, а в м’язах – розпад глікогену до молочної кислоти з виділенням енергії, що забезпечує швидке зростання м’язової активності. Глюкагон стимулює розпад глікогену печінки, але не впливає на глікоген м’язів. Секретується підшлунковою залозою при зниженні концентрації глюкози в крові.

n

Гормон підшлункової залози інсулін стимулює надходження глюкози в клітини і синтез глікогену. Механізми його дії ще до кінця не з’ясовані. Одним із них є активація інсуліном фосфодіестерази цАМФ, що приводить до зниження внутрішньоклітинного рівня цАМФ, у результаті стимулюється утворення неактивної фосфорилази й активної глікогенсинтази. У гепатоцитах інсулін підвищує активність глюкокінази.

n

Існує ряд додаткових способів регуляції активності ферментів розпаду і синтезу глікогену:

n

1. Неактивна фосфорилаза b м’язів може активуватись без фосфорилювання, тобто не перетворюючись у фосфорилазу а. Це здійснюється шляхом зв’язування в алостеричному центрі фосфорилази b АМФ. Алостеричній активації фосфорилази b із АМФ перешкоджає АТФ. У стані м’язового спокою, коли концентрація АТФ значно більша, ніж АМФ, фосфорилаза знаходиться в неактивній b-формі. Під час роботи м’язів концентрація АТФ знижується, а зростає концентрація АМФ, що зумовлює активацію фосфорилази b і, в результаті, розщеплення глікогену для синтезу АТФ. Але швидке і значне збільшення швидкості глікогенолізу в м’язах відбувається тільки у результаті перетворення фосфорилази b у фосфорилазу а.

n

2. Кіназа фосфорилази м’язів також може переходити в активну форму без фосфорилювання. Активатором служать іони кальцію, концентрація яких в саркоплазмі різко зростає у відповідь на нервовий імпульс, який зумовлює скорочення м’язів.

n

3. Неактивна фосфорильована форма глікогенсинтази активується алостерично глюкозо-6-фосфатом. При наявності достатньо високої концентрації глюкозо-6-фосфату фосфорильований фермент проявляє майже таку активність, як дефосфорильований.

n

4. Провідну роль у регуляції метаболізму глікогену в печінці відіграє концентрація глюкози. Її високий вміст викликає перехід фосфорилази а у фосфорилазу b й утворення активної глікогенсинтази, що приводить до зупинки розпаду глікогену і стимуляції його синтезу. При зниженні концентрації глюкози синтез глікогену пригнічується і починається розпад його.

n

Глюконеогенез

n

Глюконеогенез – це процес синтезу глюкози з невуглеводних субстратів. Такими попередниками глюкози є лактат, піруват, більшість амі­нокислот, гліцерин, проміжні продукти циклу лимонної кислоти. Відбувається глюконеогенез у печінці й, невеликою мірою, в кірковій речовині нирок. Завдяки цьому процесу підтримується концентрація глюкози в крові після того, як вичерпаються запаси глікогену при вуглеводному чи повному голодуванні. Надзвичайно важливе значення глюконеогенезу для організму тварин і людини зумовлюється тим, що мозок має дуже малі запаси глікогену і глюкоза крові служить основним джерелом енергії для нього. При зменшенні концентрації глюкози в крові нижче певної критичної межі порушується функціонування мозку і може настати смерть. Механізм глюконеогенезу також забезпечує видалення з крові таких продуктів тканинного метаболізму, як лактат і гліцерин.

n

Обхідні реакції каталізуються іншими ферментами і є також незворотними, але вони йдуть у напрямку синтезу глюкози.

n

Перша незворотна стадія – перетворення пірувату у фосфоенол­піруват, сполуку з макроергічним зв’язком. Здійснюється воно через проміжну речовину – оксалоацетат. Спочатку мітохондріальний фермент піруваткарбоксилаза каталізує АТФ-залежне карбоксилювання ­пірувату. Алостеричним активатором піруваткарбоксилази служить ацетил-КоА. Як розглянуто раніше, піруваткарбоксилазна реакція також постачає оксалоацетат для циклу лимонної кислоти. У глюконеогенезі оксалоацетат під дією фосфоенолпіруват-карбо­ксикінази перетворюється у фосфоенолпіруват.

n

Одночасно відбуваються декарбоксилювання і фосфорилювання. ГТФ, який використовується в цій реакції, регенерується шляхом взаємодії ГДФ з АТФ. Таким чином, на перетворення пірувату у фосфоенолпіруват витрачаються 2 молекули АТФ, тоді як у процесі гліколізу при перетворенні фосфоенолпірувату в піруват синтезується тільки 1 молекула АТФ. Труднощі викликає різна локалізація ферментів у клітині. Фосфоенолпіруват-карбоксикіназа знаходиться в цитоплазмі, а оксалоацетат, який утворюється в мітохондріях, не проникає через мітохондріальну мембрану. Тому оксалоацетат відновлюється в матриксі мітохондрій під дією ферменту циклу Кребса малатдегідрогенази до малату, який може виходити з мітохондрій. Цитоплазматична малатдегідрогеназа окиснює малат назад в оксалоацетат.

n

Утворений фосфоенолпіруват далі переходить за допомогою зворотних реакцій гліколізу у фруктозо-1,6-дифосфат. На етап перетворення 3-фосфогліцерату в 1,3-дифосфогліцерат затрачається одна молекула АТФ. Фосфофруктокіназна реакція гліколізу фруктозо-6-фосфат – фруктозо-1,6-дифосфат незворотна, тому інший фермент (фруктозо-­дифосфатаза) каталізує гідроліз фруктозо-1,6-дифосфату до фруктозо-6-фосфату.

n

Вивільняється неорганічний фосфат, а енергія макроергічного фосфодіефірного зв’язку виділяється у вигляді тепла. У наступній зворотній реакції фруктозо-6-фосфат перетворюється в глюкозо-6-фосфат, який в об­хід­ній реакції під дією глюкозо-6-фосфатази гідролізується до вільної ­глюкози. Крім того, глюкозо-6-фосфат може використовуватись для синтезу глікогену.

n

Для синтезу глюкози шляхом глюконеогенезу використовуються проміжні продукти циклу лимонної кислоти, які перетворюються в циклі в оксалоацетат. Фактичними субстратами є амінокислоти, які після втрати аміногруп стають проміжними продуктами циклу Кребса та піруватом. Такі амінокислоти називаються глюкогенними. Глюконеогенез з амінокислот інтенсивно відбувається при голодуванні та цукровому діабеті. Крім того, в цих умовах розпадаються жири жирової тканини, причому жирні кислоти застосовуються як джерело енергії в м’язах, печінці й інших тканинах, а гліцерин у печінці шляхом глюконеогенезу переходить у глюкозу.

n

Іншим важливим субстратом глюконеогенезу є молочна кислота, яка накопичується в організмі під час інтенсивної м’язової роботи внаслідок анаеробного розпаду глікогену. У період відновлення після напруженої роботи молочна кислота переноситься кров’ю з м’язів до печінки, де під дією лактатдегідрогенази окиснюється до пірувату. Частина останнього використовується для глюконеогенезу, а частина розпадається аеробним шляхом, забезпечуючи процес глюконеогенезу АТФ. Глюкоза потрапляє назад у скелетні м’язи і застосовується для відновлення запасу глікогену. Поєднання процесу анаеробного гліколізу в скелетних м’язах і глюконеогенезу в печінці називається циклом Корі.

n

Молочна кислота утворюється постійно в еритроцитах, мозковій частині нирок, сітківці ока, а в печінці й корі нирок переходить у глюкозу, яка повинна знову надходити в названі клітини і використовуватись. Таким чином, ця кислота, на відміну від глюкогенних амінокислот, не служить попередником для глюкози крові, що могла б використовуватись у мозку і нервах при голодуванні.

n

Регуляція глюконеогенезу

n

У клітинах печінки здійснюється координована регуляція гліколізу і глюконеогенезу відповідно до фізіологічних потреб усього організму. Система контролю включає субстрати і проміжні продукти процесів, регуляторні ферменти та їх ефектори, гормони. Підкреслимо, що регуляторними ферментами глюконеогенезу і гліколізу є ті, що каталізують незворотні реакції і не беруть участі у протилежному процесі. ­Наприклад, піруваткарбоксилаза (активатор – ацетил-КоА) і фруктозодифосфатаза ­(активатор – цитрат, інгібітори – АМФ і фруктозо-2,6-дифосфат). На рис. показані регуляторні пункти гліколізу і глюконеогенезу та контрольні чинники.

n

Деякі ефектори одночасно впливають на активність регуляторних ферментів в обох процесах. Так, ацетил-КоА служить активатором піруваткарбоксилази і інгібітором піруваткінази. Крім того, ацетил-КоА є інгібітором піруватдегідрогеназного комплексу і, сповільнюючи розпад пірувату до ацетил-КоА, сприяє переходу пірувату в глюкозу. АМФ інгібує фруктозо-дифосфатазу і разом з тим активує відповідний фермент гліколізу – фосфофруктокіназу. Навпаки, цитрат – активатор фосфатази й інгібітор кінази.

n

Глюконеогенез стимулюється не тільки активаторами піруваткарбоксилази і фруктозодифосфатази, а й інгібіторами регуляторних ферментів гліколізу (АТФ, аланін, жирні кислоти). Таким чином, коли в клітині є достатня концентрація палива для циклу лимонної кислоти (ацетил-КоА, оксалоацетату, цитрату, жирних кислот, аланіну) чи висока концентрація АТФ і низькі –АДФ та АМФ, посилюється біосинтез глюкози і гальмується гліколіз. У протилежній ситуації стимулюється гліколіз і гальмується глюконеогенез.

n

На глюконеогенез впливають такі гормони, як глюкагон й інсулін підшлункової залози та глюкокортикоїди кори надниркових залоз. При голодуванні глюкагон посилює розпад жирів у жировій тканині. Жирні кислоти надходять у печінку, де розпадаються до ацетил-КоА. Швидкість окиснення ацетил-КоА в циклі лимонної кислоти відстає від швидкості його утворення, і підвищений рівень ацетил-КоА в клітині активує піруваткарбоксилазу. В результаті посилюється глюконеогенез.

n

Глюкагон започатковує глюконеогенез ще одним способом – через фруктозо-2,6-дифосфат. Утворюється фруктозо-2,6-дифосфат із фруктозо-6-фосфату при дії ­фосфофруктокінази ІІ, а розщеплюється фруктозо-2,6-дифосфатазою.

n

Фруктозо-2,6-дифосфат активує фермент гліколізу фосфофрукто­кіназу і гальмує активність ферменту глюконеогенезу фруктозо-1,6-дифосфатази. Утворення фруктозо-2,6-дифосфату пригнічується глюкагоном, який шляхом цАМФ-залежного фосфорилювання інактивує фосфо­фруктокіназу ІІ й активує фруктозо-2,6-дифосфатазу. Таким чином, при голодуванні глюкагон знижує внутрішньоклітинну концентрацію фруктозо-2,6-дифосфату, що викликає стимуляцію глюконеогенезу і гальмування гліколізу. Підвищення швидкості глюконеогенезу в печінці призводить до того, що глюкоза надходить у кров і потрапляє в інші органи, насамперед у мозок.

n

Субстратами глюконеогенезу служать амінокислоти, оскільки під час голодування в крові низьке співвідношення інсулін/глюкагон гальмує синтез білків і стимулює їх катаболізм, зокрема в м’язах, що забезпечує постачання амінокислот у печінку. При тривалому голодуванні зростає секреція корою надниркових залоз глюкокортикоїдів, які посилюють у печінці синтез ферментів глюконеогенезу (фосфоенолпіруват-карбоксикінази, глюкозо-6-фосфатази) й амінотрансфераз – ферментів, які каталізують перетворення глюкогенних амінокислот у піруват і оксалоацетат. У м’язах та інших тканинах глюкокортикоїди гальмують синтез білків. У результаті стимуляції глюконеогенезу глюкокортикоїди збільшують концентрацію глюкози в крові й синтез глікогену в печінці. Інсулін протидіє стимулюючій дії глюкагону і глюкокортикоїдів на глюконеогенез.

n

РЕГУЛЯЦІЯ РІВНЯ ГЛЮКОЗИ В КРОВІ

n

У нормі через декілька годин після їди концентрація глюкози в крові людини складає 3,33-5,55 ммоль/л. При споживанні вуглеводної їжі вона зростає до 8-9 ммоль/л, а через 2 год повертається до норми. Голодування протягом декількох діб майже не відбивається на рівні глюкози в крові.

n

Постійність концентрації глюкози дуже важлива з огляду на високу вірогідність порушення функцій головного мозку при гіпоглікемії. Це зумовлюється рядом обставин:

n

1) енергетичні потреби головного мозку забезпечуються тільки глюкозою (лише на пізній стадії голодування – кетоновими тілами);

n

2) запаси глікогену в головному мозку дуже незначні;

n

3) шляхом глюконеогенезу глюкоза в клітинах мозку не ­син­тезується;

n

4) глюкоза надходить із крові в клітини головного мозку шляхом незалежної від інсуліну дифузії за градієнтом концентрації, при гіпоглікемії надходження стає недостатнім для нормального функціонування мозку. Швидкий розвиток гіперглікемї також може зумовити порушення функцій мозку.

n

Концентрація глюкози в крові залежить від рівноваги між надходженням її в кров і споживанням тканинами. Оскільки виведення ­глюкози з організму з сечею в нормі дуже незначне, то підтримка сталості концентрації у відносно вузьких межах за значних коливань надходження з їжею забезпечується процесами обміну в тканинах. ­Система регуляторних механізмів включає гормони інсулін, глюкагон, адреналін, глюкокортикоїди, а також взаємодії між тканинами (печінкою, м’язами, мозком тощо).

n

Після споживання вуглеводної їжі підвищена концентрація глюкози в крові стимулює поглинання її тканинами. Швидкість надходження в клітини печінки, м’язів, мозку й інших тканин прямо пропорційна концентрації глюкози в позаклітинній рідині. Крім того, висока концентрація глюкози в циркулюючій крові стимулює секрецію b-клітинами підшлункової залози інсуліну, який підвищує проникність глюкози через клітинні мембрани скелетних м’язів, жирової тканини.

n

У клітинах інсулін стимулює утилізацію глюкози різними шляхами:

n

А. У печінці й м’язах синтезується глікоген (інсулін індукує синтез глюкокінази печінки, активує гексокіназу і глікогенсинтазу).

n

Б. У жировій тканині й печінці глюкоза перетворюється в жирні кислоти, які утворюють тканинні резерви у вигляді тригліцеридів жирової клітковини.

n

В. Для всіх органів і тканин у період травлення й абсорбції катаболізм глюкози служить основним джерелом енергії. Посилюються гліколіз і аеробний розпад глюкози до СО2 і Н2О. Так, після прийому їжі наближення дихального коефіцієнта до одиниці вказує на більшу інтенсивність окиснення глюкози. Величина катаболізму вуглеводів буде залежати від потреби організму в енергії. Крім того, в цей період високе відношення інсулін/глюкагон в крові стримує глюконеогенез. У результаті концентрація глюкози в крові наближається до норми, опускаючись іноді нижче вихідного рівня. Секреція інсуліну поступово припиняється.

n

При припиненні надходження вуглеводів їжі концентрація глюкози в крові протягом декількох днів майже не знижується завдяки двом процесам: розпаду глікогену печінки і глюконеогенезу. Зменшення концентрації глюкози в крові до нижньої межі норми ініціює виділення підшлунковою залозою глюкагону, який активує фосфорилазу печінки. Зростають розпад глікогену і вихід глюкози в кров. Розпад глікогену печінки підтримує нормальний рівень глюкози в крові не більше 24 год, але вже через 5-6 год після прийому їжі починається повільне підвищення глюконеогенезу із амінокислот і гліцерину, а через 24 год глюконеогенез перебігає з максимальною активністю. Разом із глюкагоном, який активує ферменти глюконеогенезу, включаються глюкокортикоїди, які стимулюють синтез ферментів глюконеогенезу в печінці й посилюють розпад білків у інших тканинах, що забезпечує процес глюконео­генезу субстратами. Внаслідок низького відношення в крові інсулін/глюкагон під час голодування глюкоза не захоплюється печінкою, скелетними м’язами, міокардом, жировою тканиною. Перераховані чинники забезпечують в умовах голодування надходження глюкози в головний мозок у необхідній кількості. При тривалому голодуванні головний мозок, як і інші тканини, використовує як джерело енергії кетонові тіла.

n

Крім глюкагону і глюкокортикоїдів, концентрацію глюкози в крові підвищує ще ряд гормонів. Адреналін – гормон мозкової частини надниркових залоз – виділяється в стресових ситуаціях і через каскадний механізм викликає швидкий і сильний розпад глікогену печінки до вільної глюкози. Підвищенням рівня глюкози в крові супроводжується дія гормону росту, адренокортикотропіну, тироксину. Таким чином, концентрацію глюкози в крові знижує тільки інсулін, а підвищує ряд гормонів. Існування групи надійних дублюючих механізмів підкреслює той факт, що най­ближчі результати гіпоглікемії небезпечніші, ніж наслідки гіперглікемії.

n

Узгоджена дія різних гормонів зумовлює досконалість регуляції ­гомеостазу глюкози, забезпечує пристосування обміну вуглеводів у ­всьому організмі до змін харчування, фізичної активності й інших фізіологічних умов.

n

Підвищена концентрація глюкози в крові внаслідок споживання вуглеводної їжі (аліментарна гіперглікемія) і внаслідок стресу (емоційна гіперглікемія) швидко знижується до норми. Стійка гіперглікемія може розвинутись при цукровому діабеті, який виникає в результаті абсолютної чи відносної недостатності інсуліну. Інші причини гіперглікемії – надлишкова секреція гормону росту, глюкокортикоїдів, іноді ураження ЦНС, порушення мозкового кровообігу, захворювання печінки, підшлункової залози.

n

Гіперглікемію при цукровому діабеті можна розглядати як корисне пристосування, яке сприяє використанню глюкози клітинами мозку, міокарда, еритроцитами, тобто інсулінонезалежними тканинами. Однак у скелетні м’язи, печінку та інші інсулінозалежні тканини глюкоза не надходить. При високій концентрації глюкози в крові підвищується швидкість зв’язування її з білками (глікозилювання білків), що зумовлює порушення їх функцій, тому тривала гіперглікемія викликає ряд віддалених ускладнень цукрового діабету

n

При діагностиці цукрового діабету кров для аналізу краще брати після голодування протягом хоча б 10 год. Концентрація глюкози в плазмі крові, взятої натщесерце, вища за 8 ммоль/л, свідчить про вірогідність цукрового діабету. Якщо концентрація глюкози знаходиться в межах 6‑8 ммоль/л, то досліджують кров після цукрового навантаження (дають випити 75 г глюкози, розчиненої у воді). Концентрація через 2 год після навантаження 10 ммоль/л і вище вказує на цукровий діабет, а концентрація від 8 до 10 ммоль/л – на знижену толерантність до глюкози. У частини осіб із порушеною толерантністю до глюкози можливий розвиток діабету.

n

У хворих на цукровий діабет глюкоза може виділятись із сечею, зо­крема після споживання їжі, при тяжких формах хвороби і під час голодування. Саме глюкозурія послужила основою для назви захворювання. У сечі здорових людей концентрація глюкози дуже низька, менша 0,8 ммоль/л (150 мг/л), оскільки клітини проксимальних відділів ниркових канальців майже повністю реабсорбують глюкозу з первинної сечі. Такий низький рівень глюкози в сечі виявляється лише високочутливими методами. Коли концентрація глюкози в плазмі крові й клубочковому фільтраті перевищує 10 ммоль/л, реабсорбційна здатність ниркових канальців стає недостатньою і певна кількість глюкози виділяється із сечею. Гіперглікемічна глюкозурія спостерігається не тільки при цукровому діабеті, а й при всіх захворюваннях, які супроводжуються рівнем гіперглікемії, вищим за нирковий поріг. Але в ряді випадків глюкозурія не розвивається, хоч вміст глюкози в плазмі крові перевищує нирковий поріг. Це спостерігається тоді, коли об’єм клубочкового фільтрату малий, загальна кількість глюкози, що надходить у ниркові канальці, низька і ­повністю реабсорбується.

n

Глюкозурія може бути і за нормальної чи дещо підвищеної концентрації глюкози в плазмі крові, якщо виникає дефект мембрано­транспортного механізму в канальцях (ниркова глюкозурія). У даному випадку нирковий поріг знижений. Ниркова глюкозурія спостерігається іноді при вагітності, спадковій недостатності проксимальних відділів ниркових канальців, дії на клітини проксимальних канальців токсичних речовин (важких металів, органічних розчинників тощо)

n

Гіпоглікемія виникає при таких патологічних станах:

n

1) надмірно високому вмісті інсуліну внаслідок пухлин чи гіперплазії клітин острівців підшлункової залози;

n

2) гіпофункції надниркових залоз;

n

3) гіпофункції гіпофіза;

n

4) багатьох типах злоякісних пухлин, локалізованих поза підшлунковою залозою;

n

5) тяжких ураженнях печінки, нервової системи, шлунка і ­кишечника;

n

6) у ранньому дитячому віці при спадкових порушеннях обміну вуглеводів – галактоземії, непереносимості фруктози, деяких типах глікогенозів.

n

Крім того, гіпоглікемію можуть спричиняти деякі ліки, споживання значної кількості алкоголю. Найпоширенішими в клінічній практиці є гіпо­глікемії, викликані надмірним введенням інсуліну хворим на цукровий діабет, а також прийомом ряду інших лікарських середників. Гіпоглікемію, зумовлену надмірним введенням інсуліну чи високою продукцією ендогенного інсуліну, діагностують шляхом визначення вмісту інсуліну. Симптоми гіпоглікемії розвиваються, коли концентрація глюкози в плазмі крові стає нижчою 2,5 ммоль/л (45 мг/дл). Спостерігаються запаморочення, корчі та інші неврологічні порушення аж до гіпоглікемічної коми. Прояви посилюються при значному фізичному навантаженні чи при тривалих перервах між споживанням їжі.

Залишити відповідь

Ваша e-mail адреса не оприлюднюватиметься. Обов’язкові поля позначені *

Приєднуйся до нас!
Підписатись на новини:
Наші соц мережі